DeepMind:AI加速科学创新发现的黄金时代

大家知道,今年的诺贝尔物理、化学奖出乎了所有人的意料,而这也进一步启发了大量科学家将AI作为效率工具甚至将AI技术本身融入到自己的科学领域探索与研究中,以求得更多的创新性发现。

a4c22faab8904cfd8a334a0a8a1ccade.jpg

 

最近因某些工作需要,在尝试探索并思考未来AI4S下的研究方法与计算范式的过程中,正好赶上DeepMind发表的这篇论文“A new golden age of discovery”。

92beb1b8132642baac8e65e8cfbd5ccf.jpg

 

论文中整体结构分为四个部分:

Part A: The opportunities

Part B: The ingredients

Part C: The risks

Part D: The policy response

对于Part A,研究者们提出了5个能够利用AI技术促进科学研究的机遇:

e3ecb7987838418c86d38d5098fb5377.jpg

1.Knowledge——改变科学家获取和传递知识的方式

2.Data——生成、提取和标注大型科学数据集

3.Experiments——模拟、加速并指导复杂实验

4.Models——建模复杂系统及其组件之间的相互作用

5.Solutions——为大规模搜索空间问题提出解决方案

对于上述五个机遇,研究者通过一些近期的实例进行了相关阐释和论述,在这里我想跟大家再进一步分享一下自己的一些不太成熟的观点,供大家参考和指正:

首先,对于上述的3&5,在某种计算与时空探索本质上可以一并统一来看待,这里包含了两类所承载的计算范式:数值模拟&深度神经网络(数值模拟也可以作为传统符号化形式模拟装置),这两类范式在不同学科中我们都会看到其在真实世界中对于探索与发现在时空尺度下加速或提效,且某些领域甚至是价值非凡的。不同的是,两种范式对过程探索与发现的关键储备要素与所运用的研究方法有着根本的不同,这其中背后的缘由又牵扯到了底层深邃的数学基础。然而,上述两种不同的范式所对应的不同学科的研究又与论文下一个Part B中的Problem selection部分息息相关,如在你解决的科学问题上所采取的技术方法与路线是否能带来增益。

cbf38e4bfef84348bc50f4b87096c3b2.jpg

 

其次,对于上述1、2、4,又可以作为3&5在科学研究探索与发现的关键核心历程中作为不可或缺的研究要素以及研究成果,在这些要素间,其自身内部和之间也会也会存在着在探索、发现、认知等结构性的内涵联系,相信这种联系也会在未来进一步促成AI4S范式的进一步演进与统一…

对于论文的后几部分,我想当下未来对科学Risk的警惕要远比探索和发现本身要重要且匮乏的多。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值