【疑难杂症】

在PyTorch中遇到训练和预测相同图片数据结果不同的问题,可能原因包括:缺少`model.eval()`,数据预处理不一致,未设置随机数种子,模型保存与加载环境不一致,输入类型与权重类型不匹配,以及图像处理步骤不正确。解决方案包括正确使用模型状态,确保预处理一致性,设置随机数种子,注意模型保存和加载的环境匹配,以及在图像裁剪和resize时进行适当的归一化操作以提高人脸识别效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pytorch 训练和预测时,相同的图片数据,得到的结果不同?

解答:
1、验证、测试和预测时,要 加上 model.eval()
2、数据预处理不一致,训练时数据做了归一化、标准化等操作,预测时也要做相同的操作
3、未设置随机数种子

torch.load加载保存好的模型就报这个错

1、pytorch模型保存是基于pickle保存的,是将模型object对象保存了,这个保存在加载的时候,就要求你当前环境和你保存模型时候的环境完全一样(pytorch版本、自己定义的class类之类的)

Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same
此处要注释掉,原因不明在这里插入图片描述

modelscope问题:
win10 coda python 3.7

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值