深层神经网络会让模型变得更加强大,但是可能带来过拟合,解决的办法就是正则化。
正则化就是指在代价函数后加上一个正则化项
L2正则化
在代价函数后面加上神经网络各层权重参数W所有元素的二次方之和。此时的代价函数为
等式右边第一项是神经网络损失,第二项是神经网络各层权重参数W所有元素的二次方之和
正则化项相当于神经网络参数W的惩罚项,神经网路模型之所以发生过拟合,是因为参数W普遍较大,消除这一问题的方法之一就是让高阶参数w3,w4足够小,这样可以达到忽略不计的效果,也就是为了防止过拟合选择一些比较重要的特征变量,删掉很多次要的特征变量。但是实际上我们又希望利用这些特征信息,所以通过正则化约束这些特征变量,使这些特征变量权重很小,接近于0,这样既能保留这些特征变量,又不至于使这些特征变量的影响过大。
L1正则化
正则化项为神经网络各层权重参数W所有元素的绝对值之和