【深度学习】正则化

本文介绍了正则化在防止深度神经网络过拟合中的作用,详细阐述了L1和L2正则化的区别,L1正则化倾向于产生稀疏权重,增强模型的可解释性,而L2正则化通过平方项抑制权重过大。正则化系数用于平衡模型误差与正则化项之间的关系。此外,还提及了dropout正则化作为另一种有效的防止过拟合的策略,但具体内容待补充。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深层神经网络会让模型变得更加强大,但是可能带来过拟合,解决的办法就是正则化。

正则化就是指在代价函数后加上一个正则化项

L2正则化

在代价函数后面加上神经网络各层权重参数W所有元素的二次方之和。此时的代价函数为

J=\frac{1}{m}\sum_{i=1}^{m}L(a^{[l](i)})+\frac{\lambda }{2m}\sum_{l=1}^{L}\left \| W^{l} \right \|^{2}

等式右边第一项是神经网络损失,第二项是神经网络各层权重参数W所有元素的二次方之和

正则化项相当于神经网络参数W的惩罚项,神经网路模型之所以发生过拟合,是因为参数W普遍较大,消除这一问题的方法之一就是让高阶参数w3,w4足够小,这样可以达到忽略不计的效果,也就是为了防止过拟合选择一些比较重要的特征变量,删掉很多次要的特征变量。但是实际上我们又希望利用这些特征信息,所以通过正则化约束这些特征变量,使这些特征变量权重很小,接近于0,这样既能保留这些特征变量,又不至于使这些特征变量的影响过大。

L1正则化

正则化项为神经网络各层权重参数W所有元素的绝对值之和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值