结合创新!ResNet+Transformer,高性能低参数,准确率达99.12%

今天给各位介绍一个发表高质量论文的好方向:ResNet结合Transformer

ResNet因其深层结构和残差连接,能够有效地从图像中提取出丰富的局部特征。同时,Transformer的自注意力机制能够捕捉图像中的长距离依赖关系,为模型提供全局上下文信息。

这种策略结合了两者分别在处理空间、序列数据上的优势,强化了模型特征提取和全局理解方面的能力,让模型在保持强大的局部分析能力的同时,也能够利用全局信息来进一步提升性能。 比如高性能低参数的SpikingResformer,以及准确率高达99.12%的EfficientRMT-Net。

本文整理了9种ResNet结合Transformer的创新方案,并简单提炼了可参考的方法以及创新点,希望能给各位的论文添砖加瓦。

论文以及开源代码需要的同学看文末

SpikingResformer: Bridging ResNet and Vision Transformer in Spiking Neural Networks

方法:本文介绍了一种新型的脉冲自注意机制,名为双脉冲自注意(DSSA),以及基于该机制的脉冲视觉Transformer架构——SpikingResformer。DSSA通过双脉冲转换生成脉冲自注意,完全基于脉冲驱动且与SNN兼容。SpikingResformer结合了ResNet多阶段设计和提出的脉冲自注意机制,实现了更好的性能和更低的参数和能耗。

创新点:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值