二分查找
搜索插入位置
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为
O(log n)
的算法。
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int l=0,r=nums.size();
while(l<r){ //开
int mid=(l+r)/2;
if(nums[mid]<target) l=mid+1;
else r=mid;//直到 l == r 才退出;
}
return l;
}
};
搜索二位矩阵
给你一个满足下述两条属性的
m x n
整数矩阵:
- 每行中的整数从左到右按非严格递增顺序排列。
- 每行的第一个整数大于前一行的最后一个整数。
给你一个整数
target
,如果target
在矩阵中,返回true
;否则,返回false
。
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int m = matrix.size(), n = matrix[0].size();
int left = -1, right = m * n;
while (left + 1 < right) {
int mid = left + (right - left) / 2;
int x = matrix[mid / n][mid % n];
if (x == target) {
return true;
}
(x < target ? left : right) = mid;
}
return false;
}
};
在排序数组中查找元素的第一个和最后一个位置
给你一个按照非递减顺序排列的整数数组
nums
,和一个目标值target
。请你找出给定目标值在数组中的开始位置和结束位置。如果数组中不存在目标值
target
,返回[-1, -1]
。你必须设计并实现时间复杂度为
O(log n)
的算法解决此问题。
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
if(nums.empty()) return {-1,-1};
int l = 0, r = nums.size() - 1; //二分范围
while( l < r) //查找元素的开始位置
{
int mid = (l + r )/2;
if(nums[mid] >= target) r = mid;
else l = mid + 1;
}
if( nums[r] != target) return {-1,-1}; //查找失败
int L = r;
l = 0, r = nums.size() - 1; //二分范围
while( l < r) //查找元素的结束位置
{
int mid = (l + r + 1)/2;
if(nums[mid] <= target ) l = mid;
else r = mid - 1;
}
return {L,r};
}
};
搜索旋转排序数组
整数数组
nums
按升序排列,数组中的值 互不相同 。在传递给函数之前,
nums
在预先未知的某个下标k
(0 <= k < nums.length
)上进行了 旋转,使数组变为[nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(下标 从 0 开始 计数)。例如,[0,1,2,4,5,6,7]
在下标3
处经旋转后可能变为[4,5,6,7,0,1,2]
。给你 旋转后 的数组
nums
和一个整数target
,如果nums
中存在这个目标值target
,则返回它的下标,否则返回-1
。你必须设计一个时间复杂度为
O(log n)
的算法解决此问题。
class Solution {
public:
int search(vector<int>& nums, int target) {
int lo = 0, hi = nums.size() - 1;
while (lo < hi) {
int mid = (lo + hi) / 2;
if ((nums[0] > target) ^ (nums[0] > nums[mid]) ^ (target > nums[mid]))
lo = mid + 1;
else
hi = mid;
}
return lo == hi && nums[lo] == target ? lo : -1;
}
};
寻找旋转排序数组中的最小值
已知一个长度为
n
的数组,预先按照升序排列,经由1
到n
次 旋转 后,得到输入数组。例如,原数组nums = [0,1,2,4,5,6,7]
在变化后可能得到:
- 若旋转
4
次,则可以得到[4,5,6,7,0,1,2]
- 若旋转
7
次,则可以得到[0,1,2,4,5,6,7]
注意,数组
[a[0], a[1], a[2], ..., a[n-1]]
旋转一次 的结果为数组[a[n-1], a[0], a[1], a[2], ..., a[n-2]]
。给你一个元素值 互不相同 的数组
nums
,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。你必须设计一个时间复杂度为
O(log n)
的算法解决此问题。
class Solution {
public:
int findMin(vector<int>& nums) {
int low = 0;
int high = nums.size() - 1;
while (low < high) {
int pivot = low + (high - low) / 2;
if (nums[pivot] < nums[high]) {
high = pivot;
}
else {
low = pivot + 1;
}
}
return nums[low];
}
};
寻找两个正序数组中位数
给定两个大小分别为
m
和n
的正序(从小到大)数组nums1
和nums2
。请你找出并返回这两个正序数组的 中位数 。算法的时间复杂度应该为
O(log (m+n))
。
class Solution {
public:
int getKthElement(const vector<int>& nums1, const vector<int>& nums2, int k) {
/* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
* 这里的 "/" 表示整除
* nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
* nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
* 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
* 这样 pivot 本身最大也只能是第 k-1 小的元素
* 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
* 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
* 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
*/
int m = nums1.size();
int n = nums2.size();
int index1 = 0, index2 = 0;
while (true) {
// 边界情况
if (index1 == m) {
return nums2[index2 + k - 1];
}
if (index2 == n) {
return nums1[index1 + k - 1];
}
if (k == 1) {
return min(nums1[index1], nums2[index2]);
}
// 正常情况
int newIndex1 = min(index1 + k / 2 - 1, m - 1);
int newIndex2 = min(index2 + k / 2 - 1, n - 1);
int pivot1 = nums1[newIndex1];
int pivot2 = nums2[newIndex2];
if (pivot1 <= pivot2) {
k -= newIndex1 - index1 + 1;
index1 = newIndex1 + 1;
}
else {
k -= newIndex2 - index2 + 1;
index2 = newIndex2 + 1;
}
}
}
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int totalLength = nums1.size() + nums2.size();
if (totalLength % 2 == 1) {
return getKthElement(nums1, nums2, (totalLength + 1) / 2);
}
else {
return (getKthElement(nums1, nums2, totalLength / 2) + getKthElement(nums1, nums2, totalLength / 2 + 1)) / 2.0;
}
}
};