GAM广义加性模型、向前逐步回归(变量选择)、部分依赖图 (常用于数据特征分析,查看自变量与因变量关系)

部分依赖图

常用于数据特征分析,查看自变量与因变量关系

部分依赖图(以下简称PDP)显示了目标响应]和一组“目标”特征之间的依赖关系,并边缘化所有其他特征(“补充”特征)的值。直观地,我们可以将部分依赖关系解释为预期目标响应作为“目标”特征的函数。

GradientBoostingRegressor、pyGAM都可以实现

GradientBoostingRegressor:
https://www.codingdict.com/article/28445

pyGAM:

https://blog.csdn.net/qq_41103204/article/details/104679779?utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_baidulandingword~default-1-104679779-blog-102883556.pc_relevant_vip_default&spm=1001.2101.3001.4242.1&utm_relevant_index=4

边际效应 是从已有拟合模型结果中计算出来的统计量,该数值表示 自变量的变化 对 因变量的变化 的 影响作用 的 大小。

广义相加模型(GAMs):
在这里插入图片描述
之所是”相加性的”,是因为我们对于每个变量Xj都单独计算fj,fj可以是任意形式的函数,最后统一加起来用来预测Y.
https://blog.csdn.net/tongweiganglp/article/details/53422324

回归问题中的加性模型(GAM):
https://zhuanlan.zhihu.com/p/53001283

逐步回归

逐步回归选取特征及GAM模型的使用:
https://www.freesion.com/article/89651405774/
根据AIC准则定义向前逐步回归进行变量筛选:
https://blog.csdn.net/weixin_44835596/article/details/89763300

<think>我们面对的是一个回归问题:以时点余额(连续变量)为因变量,多个业务指标(进件量、授信通过率、户均授信、笔均投放、额度使用率等)为自变量,构建预测模型,并分析各变量对时点余额的影响。目标:1.建立预测模型,预测时点余额。2.分析各自变量对时点余额的影响程度(即特征重要)。3.用于业务优化(例如,通过调整某些业务指标来提升时点余额)。可用的模型:1.线回归:简单、可解释强,可以给出每个自变量的系数(影响方向及大小)。但假设线关系,可能过于简单。2.广义模型GAM):允许每个特征目标变量之间存在非线关系,通过光滑函数拟合。公式为:$$g(E(Y))=\beta_0+f_1(X_1)+f_2(X_2)+\cdots+f_p(X_p)$$其中$g$是链接函数(对于连续目标通用恒等链接),$f_j$是光滑函数(如样条函数)。GAM可以捕捉非线关系,同时保持可解释(每个特征函数可可视化)。3.决策树、随机森林、梯度提升树(如XGBoost,LightGBM):可以捕捉复杂的非线关系和交互作用,但可解释相对较差(虽然可以通过特征重要评估,但无法直接得到影响方向)。4.神经网络:强大的拟合能力,但可解释差。考虑到需要分析各变量对时点余额的影响程度,可解释重要。因此,线回归和GAM是较好的选择,尤其是当业务上需要明确每个变量的影响时。步骤:1.数据准备:-收集数据:包括每个时间点的时点余额以及对应的进件量、授信通过率、户均授信、笔均投放、额度使用率等。-数据清洗:处理缺失值、异值。-数据探索:查看变量分布、相关等。2.特征工程:-考虑时间因素:时点余额可能具有时间序列特(例如,相邻时间点可能相关),因此可以考虑入时间特征(如月份、季度)或滞后特征(如上一个时间点的余额)。-变量变换:对某些变量进行变换(如对数变换)以改善线关系或稳定方差。-交互作用:根据业务知识,考虑入交互项(例如,进件量和授信通过率的交互)。3.模型选择训练:-尝试多种模型(线回归、GAM、树模型等),使用交叉验证评估能(如R²、MAE、RMSE)。-对于GAM,可以使用Python的`pygam`库或R的`mgcv`包。4.模型解释:-线回归:直接解释系数(如:当进件量增1单位,时点余额平均增$\beta_1$单位)。-GAM:绘制每个特征的光滑函数曲线,观察其非线效应(例如,户均授信在某个范围内对余额有正影响,超过阈值后影响减弱)。-树模型:使用特征重要(如基于基尼不纯度或基于排列的重要)评估各变量的相对影响程度。5.业务优化:-根据模型结果,识别关键影响因素(如额度使用率对余额影响最大),制定相应策略(如提高额度使用率)。-进行敏感分析:模拟改变某个变量(如将授信通过率提高5%),预测时点余额的变化。注意事项:-多重共线自变量之间可能存在相关(如进件量和授信通过率),使用VIF(方差膨胀因子)检查,或使用正则化(如岭回归、Lasso)处理。-时间序列特:如果数据是时间序列,需要考虑自相关(使用时间序列模型如ARIMA,或入滞后变量)或使用时间序列交叉验证。-模型稳定:业务数据可能随时间变化,模型需定期更新。举例:使用GAM模型Python中,可以使用`pygam`库:```pythonfrompygamimportLinearGAM,sgam=LinearGAM(s(0)+s(1)+s(2)+...)#为每个特征指定一个样条项gam.fit(X,y)```然后,可以通过`gam.coef_`查看系数(对于线项)或绘制部分依赖图(`gam.partial_dependence`)来观察每个特征的影响。总结:推荐使用GAM模型,因为它兼顾了预测能力和可解释,能够揭示非线关系。同时,也可以尝试树模型(如LightGBM)作为补充,比较预测效果,并使用SHAP值增强树模型的可解释。相关问题:1.GAM模型如何处理分类特征?2.如何评估模型的预测效果和解释?3.在业务优化中,如何量化调整业务指标带来的时点余额变化?4.如何解决时间序列数据的自相关问题?5.如何避免模型过拟合?</think>### 构建时点余额预测模型的解决方案 #### 模型选择原理 1. **广义模型GAM)** - **适用**:适合分析非线关系,可量化各变量对时点余额的独立贡献 - **模型结构**: $$ \text{时点余额} = \beta_0 + f_1(\text{进件量}) + f_2(\text{授信通过率}) + f_3(\text{户均授信}) + f_4(\text{笔均投放}) + f_5(\text{额度使用率}) + \epsilon $$ 其中 $f_i$ 为光滑函数(如样条函数),$\epsilon$ 为误差项 - **优势**: - 可捕捉变量间的非线效应 - 输出结果可直接解释各因素的影响程度 2. **多元线回归** - **适用**:当变量关系近似线时 - **模型结构**: $$ \text{时点余额} = \beta_0 + \beta_1X_1 + \beta_2X_2 + \cdots + \beta_kX_k + \epsilon $$ - **优势**: - 系数 $\beta_i$ 可直接解释变量影响方向 - 计算效率高 3. **梯度提升树(如XGBoost/LightGBM)** - **适用**:存在复杂交互效应时 - **优势**: - 自动处理非线关系和特征交互 - 支持SHAP值分析各变量贡献度 #### 建模关键步骤 1. **数据预处理** - 处理时间窗对齐问题(参考固定/非固定窗口表现期[^1]) - 异值处理(如3σ原则) - 变量标准化: $$ X_{\text{std}} = \frac{X - \mu}{\sigma} $$ 2. **特征工程** - 构建衍生变量: - 授信转化率 = $\frac{\text{授信通过量}}{\text{进件量}}$ - 资金利用率 = $\text{额度使用率} \times \text{户均授信}$ - 滞后变量:纳入历史周期数据(如t-1期余额) 3. **模型训练验证** - 使用时序交叉验证(避免未来数据泄漏) - 评估指标: - $R^2$(解释方差) - MAE(平均绝对误差):$ \frac{1}{n}\sum|y_i - \hat{y}_i| $ 4. **业务解释处理** - **GAM**:绘制部分依赖图(Partial Dependence Plots) ![](https://via.placeholder.com/400x200?text=变量影响可视化) - **树模型**:计算SHAP值(SHapley Additive exPlanations) #### 业务优化应用 1. **敏感分析** - 计算边际效应(以额度使用率为例): $$ \frac{\partial \text{余额}}{\partial \text{使用率}} \approx \text{户均授信} \times \beta_{\text{使用率}} $$ - 模拟场景:若使用率提升5%,余额预期增长$\Delta$ 2. **关键驱动识别** - 通过变量重要排序(如GAM的F统计量)确定核心杠杆 - 例:某案例显示额度使用率每提升1%,余额增长0.8%(p<0.01) 3. **策略制定** - 建立业务指标-余额响应曲线 - 优化方向: - 当笔均投放 < 临界值$c_1$时,聚焦提升进件量 - 当额度使用率 > 临界值$c_2$时,优化户均授信 #### 实施注意事项 1. **时间窗选择**:根据产品周期特选择固定/非固定表现期[^1] 2. **共线处理**:使用VIF(方差膨胀因子)检测: $$ \text{VIF}_j = \frac{1}{1-R_j^2} $$ 当VIF>5时需特征筛选 3. **动态校准**:按月回测模型,更新特征权重 > **模型选择建议**: > - 优先尝试GAM(平衡解释非线处理能力) > - 需要高精度预测时结合树模型 > - 关键业务决策场景使用双模型验证机制 --- ### 相关问题 1. 如何处理进件量授信通过率之间的多重共线问题? 2. 当时点余额呈现季节波动时,模型应如何调整? 3. GAM模型中的光滑函数选择有哪些最佳实践? 4. 如何量化业务优化措施带来的时点余额增长预期? 5. 模型结果如何盈亏平衡分析(BEP[^2])结合制定增长策略?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值