一、特征值与特征向量
教程观摩:b站视频
1、定义:
从数学上看,如果向量v与变换A满足Av=λv,则称向量v是变换A的一个特征向量,λ是相应的特征值。这一等式被称作“特征值方程”。
意思:一个矩阵,左乘一个向量等于一个常数乘这个向量
满足这个条件,v被称为矩阵A的特征向量,λ是A的特征值
🌰:
所以(111)为A 的特征向量,3为特征值
2、特征值与特征向量的作用:
参考:特征值与特征向量的作用
奇异值分解
特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么
(2)
二、协方差矩阵
观摩视频:协方差矩阵
1、针对一维样本求的协方差就是方差,方差是协方差的一种特殊情况,意义与方差相同,都是反映集合中各个元素的离散程度