特征值与特征向量&协方差矩阵

一、特征值与特征向量

教程观摩:b站视频

1、定义:
从数学上看,如果向量v与变换A满足Av=λv,则称向量v是变换A的一个特征向量,λ是相应的特征值。这一等式被称作“特征值方程”。
意思:一个矩阵,左乘一个向量等于一个常数乘这个向量
满足这个条件,v被称为矩阵A的特征向量,λ是A的特征值
🌰:
在这里插入图片描述
所以(111)为A 的特征向量,3为特征值
2、特征值与特征向量的作用:
参考:特征值与特征向量的作用
奇异值分解
特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么
(2)

二、协方差矩阵

观摩视频:协方差矩阵
1、针对一维样本求的协方差就是方差,方差是协方差的一种特殊情况,意义与方差相同,都是反映集合中各个元素的离散程度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值