深度学习04 - 卷积神经网络-实践篇-使用pytorch(CNN)实现手写数字识别

1、问题

使用Pytorch及CNN框架实现手写数字识别问题

2、代码

1、导包
导入如下一些包,后面会用到

import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.utils.data as Data
import torchvision
import time
from torchvision import transforms
import matplotlib.pyplot as plt

2、设置如下超参数

#超参数
EPOCH = 1
BATCH_SIZE = 1
LR = 0.001
# DOWNLOAD_MNIST = False
if_use_gpu = 0

分别是循环次数、每一批次训练的样本个数(因为要输出,所以设置为1)、学习率、是否使用cuda加速

3、导入训练集并传入到train_loader中

# 获取训练集dataset
training_data = torchvision.datasets.MNIST(
    root=path,  # dataset存储路径
    train=True,  # True表示是train训练集,False表示test测试集
    transform=torchvision.transforms.ToTensor(),  # 将原数据规范化到(0,1)区间
    download=False,
)
# 获取测试集dataset
test_data = torchvision.datasets.MNIST(
    root=path,  # dataset存储路径
    train=False,  # True表示是train训练集,False表示test测试集
    transform=torchvision.transforms.ToTensor(),  # 将原数据规范化到(0,1)区间
    download=False,
)
train_loader = Data.DataLoader(dataset=training_data, batch_size=BATCH_SIZE,shuffle=True)

使用pytorch提供的MNIST库,当d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值