使用例子看懂RNN

1、RNN产生原因

一些数据前后有关联,且关联的长度不确定,需要根据数据前后关系进行预测。比如视频每一帧与之前与之后的关联,要分析这些帧连接起来的整个序列。

2、几种神经网络

(1)基本循环神经网络

考虑例子:

我 昨天 上学 迟到 了 ,老师 批评 了 ____。

分为如下几步:
1、通过one-hot编码将数据向量化变为对应的数字序列
在这里插入图片描述
2、根据如下神经网络进行预测后面的数据
在这里插入图片描述
通过公式:
在这里插入图片描述
计算St与Ot
(1)首先随机初始化一个W作为向后传递的初始值
(2)然后通过输入的x向量与权重矩阵U做乘积映射成隐藏层,这个过程类似于全连接矩阵映射,比如x向量是1维的,设置的隐藏层节点个数是16,则矩阵规格是(1*16)。与全连接矩阵不同的是,在此还要加上W矩阵与上一次的隐藏层相乘的值,即将本次结果与上一次的结果建立联系
(3)通过隐藏层与输出层矩阵相乘,然后经过一个激活函数(例如softmax函数)得到本次输入的结果,将结果与预期值进行比较,然后使用梯度下降法更新U和W矩阵,直到误差最小

(2)双向循环神经网络
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值