利用tensorflow2.0实现人脸识别(三)获取人脸数据

本文介绍了如何在TensorFlow2.0环境下进行人脸识别的数据收集工作,包括利用OpenCV抓取人脸图像,处理可能出现的识别不准确问题,并强调了手动清理不合格图片以确保模型训练质量的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上文的代码中修改只是增加存储选项

import sys

import cv2


def CatchPICFromVideo(path_name, window_name="GET_FACE", camera_idx=0, catch_pic_num=1000):
    cv2.namedWindow(window_name)

    # 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头
    cap = cv2.VideoCapture(camera_idx,cv2.CAP_DSHOW)

    # 告诉OpenCV使用人脸识别分类器
    classfier = cv2.CascadeClassifier("D:\\anaconda\Lib\site-packages\opencv\\build\etc\haarcascades\haarcascade_frontalface_default.xml")

    # 识别出人脸后要画的边框的颜色,RGB格式
    color = (0, 255, 0)

    num = 0
    while cap.isOpened
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值