求最长公共子序列得长度,可以不连续。至于怎么求具体子序列是什么,后续再研究。
令LCS(s1, s2)为字符串s1和s2的最长公共子序列,如果s1和s2有一个为空,那么结果为空,因为空字符串和任何字符串都没有公共部分。如果s1和s2的最后一位相等,令s1去掉最后一位后为s1^,s2去掉最后一位后为s2^,那么LCS(s1, s2) = LCS(s1^, s2^) + 1,如果s1和s2最后一位不相等,尝试去掉s1的最后一位,因为希望新的s1的最后一位和s2最后一位相等,同样可以去掉s2最后一位和s1再比较,此时LCS(s1, s2) = Math.max(LCS(s1, s2^), LCS(s1^, s2)).
递推公式得到了之后,开始写代码,一开始就按照原始的递归的思路去写,果然超时,因为包含了大量重复的子分支。
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
return lcs(text1,text2);
}
private int lcs(String s1, String s2){
if(s1.isEmpty() || s2.isEmpty()){
return 0;
}
if(s1.charAt(s1.length() - 1) == s2.charAt(s2.length() - 1)){
return lcs(s1.substring(0,s1.length()-1), s2.substring(0,s2.length()-1)) + 1;
} else{
int a = lcs(s1, s2.substring(0, s2.length() - 1));
int b = lcs(s1.substring(0, s1.length() - 1), s2);
return Math.max(a,b);
}
}
}
改进的方法是用DP,这个和找最大公共子串类似,只不过 DP的两个维度要比两个字符串的长度分别多1,因为要存储各自为空的情况下和另外一个字符串的LCS。DP[ i ][ j ]表示s1前 i 位和s2前 j 位的LCS。
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length();
int n = text2.length();
int[][] dp = new int[m + 1][n + 1];
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
if(text1.charAt(i - 1) == text2.charAt(j - 1)){
dp[i][j] = dp[i - 1][j - 1] + 1;
} else{
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[m][n];
}
}