leetcode 1143

这篇博客探讨了如何通过动态规划算法解决寻找两个字符串的最长公共子序列问题。首先介绍了原始的递归解决方案导致的时间复杂度过高,然后提出了一种改进的DP方法,该方法通过创建一个二维数组存储子问题的解,避免了重复计算,从而提高了效率。博客详细阐述了DP数组的更新规则,并展示了优化后的Java代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求最长公共子序列得长度,可以不连续。至于怎么求具体子序列是什么,后续再研究。

令LCS(s1, s2)为字符串s1和s2的最长公共子序列,如果s1和s2有一个为空,那么结果为空,因为空字符串和任何字符串都没有公共部分。如果s1和s2的最后一位相等,令s1去掉最后一位后为s1^,s2去掉最后一位后为s2^,那么LCS(s1, s2) = LCS(s1^, s2^) + 1,如果s1和s2最后一位不相等,尝试去掉s1的最后一位,因为希望新的s1的最后一位和s2最后一位相等,同样可以去掉s2最后一位和s1再比较,此时LCS(s1, s2) = Math.max(LCS(s1, s2^), LCS(s1^, s2)).

递推公式得到了之后,开始写代码,一开始就按照原始的递归的思路去写,果然超时,因为包含了大量重复的子分支。

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        return lcs(text1,text2);
    }
    private int lcs(String s1, String s2){
        if(s1.isEmpty() || s2.isEmpty()){
            return 0;
        }
        if(s1.charAt(s1.length() - 1) == s2.charAt(s2.length() - 1)){
            return lcs(s1.substring(0,s1.length()-1), s2.substring(0,s2.length()-1)) + 1;
        } else{
            int a = lcs(s1, s2.substring(0, s2.length() - 1));
            int b = lcs(s1.substring(0, s1.length() - 1), s2);
            return Math.max(a,b);
        }
    }
}

改进的方法是用DP,这个和找最大公共子串类似,只不过 DP的两个维度要比两个字符串的长度分别多1,因为要存储各自为空的情况下和另外一个字符串的LCS。DP[ i ][ j ]表示s1前 i 位和s2前 j 位的LCS。

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length();
        int n = text2.length();
        int[][] dp = new int[m + 1][n + 1];
        for(int i = 1; i <= m; i++){
            for(int j = 1; j <= n; j++){
                if(text1.charAt(i - 1) == text2.charAt(j - 1)){
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else{
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[m][n];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值