问:2.有n个人围成一圈,顺序排号,从第一个开始报数(从1到3报数),凡报到3的人退出圈子,问最后最后留下的是原来第几号的那位. 提示:用数组完成

本文介绍了一种使用数组解决特定计数问题的方法。通过初始化数组并进行循环计数,每三个数将第三个数置为0,直至数组中只剩下一个非零元素。此算法展示了如何在数组中操作和遍历元素,最终找到‘留下来的精英’。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此题利用数组来解决。

从a[0]开始计数,每三个计数初始化一次,第三个数赋值为0(最后留下的那个不为0),每次计数到最后一个元素时,令i=0,又从头开始计数。

  1 #include <stdio.h>
  2 
  3 int main()
  4 {
  5     int n;
  6     printf("please input a number:\n");
  7     scanf("%d",&n);
  8 
  9     int a[1000];
 10     int i,sum;
 11     int count = 0;
 12     sum=n;
 13     for(i=0;i<n;i++)
 14     {
 15         a[i] = i+1;
 16     }
 17     i = 0;
 18 while (sum > 1)
 19 {
 20     if(a[i]!=0)
 21     {
 22         count++;
 23     }
 24     if(count == 3)
 25     {
 26         a[i]=0;
 27         sum--;
 28         count = 0;
 29     }
 30     i++;
 31     if(i == n)
 32     {
 33         i = 0;
 34     }
 35 }
 36 
 37 for(i=0;i<n;i++)
 38 {
 39     if(a[i] != 0)
 40         printf("留下来的精英是第%d号\n",i+1);
 41 }
 42 
 43     return 0;
 44 }

 

<think>我们使用数组来解决约瑟夫环题。思路是:用一个数组表示每个人的状态(是否出圈),初始时所有在圈内(设为0),然后模拟报数过程,每报到3将其标记为出圈(设为1),并重新开始报数。如此循环,直到圈中只剩一个人。具体步骤:1.创建一个长度为n的数组,初始化为0(表示都在圈内)。2.定义两个变量:count(当前报数值)和remain(当前剩余数)。3.使用循环直到只剩一个人(remain=1):-遍历数组(循环到末尾后又从0开始):-如果当前元素为0(在圈内),则count加1。-如果count等于3,则将该位置标记为1(出圈),count重置为0,remain减1。-当remain等于1退出循环。4.最后遍历数组,值为0的位置即为最后留下。注意:在遍历时,我们使用index循环,当index达到n时重置为0,实现循环数组。下面我们使用JavaScript实现(因为用户最后一次需求使用了数组,且引用中有多种语言,这里选用JavaScript以便于演示,但逻辑与Java/C类似):</think> ### 约瑟夫环题的数组解法 约瑟夫环题的核心是:$n$ 个人围成一圈,从 $1$ 开始报数,每报到 $3$ 的出局,最后留下原始编是多少。以下是数组模拟的完整实现(使用 JavaScript): ```javascript function josephus(n) { // 初始化数组:0表示在圈内,1表示已出局 let arr = new Array(n).fill(0); let count = 0; // 当前报数值 let remain = n; // 剩余数 // 当剩余数>1时继续循环 while (remain > 1) { for (let i = 0; i < n; i++) { if (arr[i] === 0) { count++; // 在圈内的报数 if (count === 3) { arr[i] = 1; // 标记出局 remain--; // 剩余数减1 count = 0; // 重置计数器 } } } } // 找出最后剩下的 for (let i = 0; i < n; i++) { if (arr[i] === 0) { return i + 1; // 返回原始编(下标+1) } } } // 示例测试 console.log(josephus(5)); // 输出:4 (最后留下的是第4) console.log(josephus(7)); // 输出:4 console.log(josephus(10)); // 输出:4 ``` #### 算法核心逻辑: 1. **数组映射**:用数组下标表示员编 $i$(实际编 = $i+1$) 2. **状态标识**: - $0$:员仍参与游戏 - $1$:员已退出 3. **循环控制**: - 外层 `while` 循环控制剩余数 $>1$ - 内层 `for` 循环模拟轮转报数 4. **关键操作**: - 遇到在圈内的(`arr[i] === 0`)时计数器 $count++$ - 当 $count=3$ 时将其标为出局,重置计数器 #### 数学验证: 对于 $n$ 个人的约瑟夫环(步长为 $3$),最后存活位置的通解为: $$f(n) = (f(n-1) + 3) \mod n \quad \text{(递推公式)}$$ 当 $n=5$ 时: $$ \begin{aligned} f(1) &= 0 \\ f(2) &= (f(1)+3)\mod 2 = 1 \\ f(3) &= (f(2)+3)\mod 3 = 1 \\ f(4) &= (f(3)+3)\mod 4 = 0 \\ f(5) &= (f(4)+3)\mod 5 = \mathbf{3} \quad \text{(=4)} \end{aligned} $$ #### 复杂度分析: - **时间复杂度**:$O(n \times k)$,实际接近 $O(n^2)$ - **空间复杂度**:$O(n)$,仅需一个状态数组
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值