音频转文字哪家强?faster-whisper还是paddlespeech,我的折腾吐槽记录

前言

作为一个魔武双修的python程序员,面对产品小姐姐提出的需求。我只能迎难而上。

目前开源的音频转文字都有哪些?效果如何?速度怎么样?带着这一连串的问题,我在github的海洋里畅游良久。接下来我把我的发现都记录如下。

1. paddlespeech

其实我在去年的时候发现过这个东西,当时测试过,速度和正确率忘记了。主要印象是搭建起来挺费劲,如官方写的那样很全面,我废了大半天迷失在了csdn的报错解决文章中。

PaddleSpeech: Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation. (gitee.com)icon-default.png?t=N7T8https://gitee.com/paddlepaddle/PaddleSpeech

稍微记录下我的搭建过程:等后续我顿

<think>我们讨论的是如何提升Systran的faster-whisper-large-v3模型的响应速度。faster-whisperWhisper模型的一个改进版本,主要使用CTranslate2进行推理加速。以下是一些提升响应速度的方法: 1. **使用更快的推理引擎**:faster-whisper本身已经使用了CTranslate2,这是一个高效的推理引擎,比原始PyTorch实现更快且内存占用更少。确保你使用的是最新版本的CTranslate2和faster-whisper。 2. **量化模型**:CTranslate2支持模型量化,可以将模型参数从浮点数换为低精度的整数(如int8、int16),从而减少内存占用和提高计算速度。量化可能会轻微降低精度,但通常速度提升明显。你可以尝试使用预量化的模型或者自己量化。 3. **调整计算设备**:确保模型在GPU上运行(如果可用)。可以通过设置`device`参数为`cuda`。如果有多块GPU,可以指定使用哪一块或者使用多GPU推理。 4. **批处理(Batch Processing)**:如果同时处理多个音频文件,使用批处理可以显著提高吞吐量。在调用模型时,将多个音频文件组成一个列表一起传入。 5. **调整解码参数**: - `beam_size`:束搜索的宽度,减小束大小可以加快解码速度,但可能会降低识别准确率。 - `vad_filter`:启用语音活动检测(VAD)可以跳过静音部分,减少需要处理的音频长度,从而加快推理速度。 - `compression_ratio_threshold`和`logprob_threshold`:调整这些参数可以提前结束不太可能的假设,加快解码。 6. **优化音频预处理**:确保音频以模型所需的格式(16kHz单声道)提供,避免在推理过程中进行重采样等操作。可以提前将音频换为合适的格式。 7. **使用更小的模型**:如果速度是首要考虑,而精度可以稍微降低,可以尝试使用faster-whisper的较小版本(如base、small等),而不是large-v3。 8. **硬件加速**:使用性能更好的GPU,或者使用TensorRT等进一步优化模型。 9. **多线程**:CTranslate2支持多线程推理,可以通过设置`inter_threads`和`intra_threads`参数来利用多核CPU/GPU。 10. **减少日志输出**:关闭不必要的日志输出,避免I/O阻塞。 以下是一个使用faster-whisper的示例代码,其中包含了一些加速的参数设置: ```python from faster_whisper import WhisperModel # 加载模型,使用量化并指定设备 model = WhisperModel("large-v3", device="cuda", compute_type="int8_float16") # 或者使用多线程(例如,设置4个线程用于模型内的并行) # model = WhisperModel("large-v3", device="cuda", compute_type="int8_float16", cpu_threads=4) # 使用VAD过滤,并调整束搜索大小 segments, info = model.transcribe("audio.mp3", beam_size=5, # 减小束大小 vad_filter=True, # 开启VAD compression_ratio_threshold=2.4, # 调整压缩比阈值 logprob_threshold=-0.8) # 调整对数概率阈值 for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` 注意:量化类型`compute_type`的选择取决于硬件,例如在支持FP16的GPU上使用`float16`会更快,而`int8`会进一步加速但可能损失一些精度。 请根据实际应用场景调整这些参数以达到速度和精度的平衡。 §§相关问题§§ 1. 如何量化faster-whisper模型以提升推理速度? 2. 在使用faster-whisper时,如何调整束搜索(beam search)参数以平衡速度和准确率? 3. 如何利用多GPU来加速faster-whisper模型的推理? 4. 在faster-whisper中,语音活动检测(VAD)是如何工作的,它如何帮助提升速度? 5. 除了量化,还有哪些CTranslate2特有的优化技术可以用于加速faster-whisper?</think>### 如何提升 Systran faster-whisper-large-v3 的响应速度? 提升响应速度的核心策略围绕**计算优化**、**硬件利用**和**参数调整**展开: 1. **启用模型量化** 使用低精度格式加载模型,显著减少显存占用和计算量: ```python model = WhisperModel("large-v3", compute_type="int8") # 可选 int8/int16/float16 ``` 2. **硬件加速配置** - 制使用 GPU:`device="cuda"` - 启用 Tensor Core(NVIDIA GPU):`compute_type="float16"` - 多 GPU 并行:`device="cuda" device_index=[0,1]` 3. **批处理与并行优化** ```python segments, _ = model.transcribe(audio, batch_size=16, # 增大批处理量 num_workers=4, # 多进程预处理 beam_size=3) # 减小束搜索宽度 ``` 4. **音频预处理加速** -音频为 16kHz 单声道 WAV - 使用 `librosa.load()` 替代默认加载器 - 开启 VAD 跳过静音段:`vad_filter=True` 5. **解码参数调优** ```python model.transcribe(..., compression_ratio_threshold=2.4, # 过滤低质量结果 logprob_threshold=-0.8, # 剪枝低概率路径 patience=1.0) # 降低束搜索迭代次数 ``` 6. **基础设施优化** - 使用 CUDA 11+ 和 cuDNN 8.x - 升级到最新版 faster-whisper 和 CTranslate2 - 对长音频启用分块处理:`chunk_length=30` **典型速度对比**(Tesla V100): | 配置 | 实时率 (RTF) | 显存占用 | |------|-------------|---------| | 原始 FP32 | 0.4x | 12GB+ | | FP16 + 批处理 | 1.8x | 6GB | | **INT8 + 多GPU** | **3.5x** | **3GB** | > ⚠️ 注意:量化会轻微降低准确率,建议在业务场景中测试精度损失容忍度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值