机器学习--岭回归(RidgeRegression)

本文介绍了机器学习中的岭回归模型(RidgeRegression),强调了它通过系数惩罚解决普通最小二乘法共线性问题的特点。岭回归的优化目标是带L2范数的残差平方和,并探讨了参数α如何控制系数收缩,以增强模型对共线性的鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习–岭回归模型(RidgeRegression)

基本概念

RidgeRegression 通过对系数的大小施加惩罚来解决普通最小二乘法的一些问题。岭系数最小化的是带罚项的残差平方和,优化目标为:
minw∥wTx−y∥22+α∥w∥22\mathop{min}\limits_{w}\Vert w^Tx-y\Vert_2^2+\alpha\Vert w\Vert_2^2wminwTxy2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值