盒子6910
计算机工程师一枚
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
golang实现一个定时引擎,功能包括按照corntab的时间任务实时增加、修改、删除定时任务
本文介绍了一个基于Go语言的轻量级Cron定时任务引擎实现。该引擎使用标准库time和第三方库cron/v3构建,支持秒级精度的定时任务调度。核心功能包括: 任务管理:通过Task结构体封装任务信息,提供增删改查操作 并发安全:使用读写锁(sync.RWMutex)保证多线程安全 动态调度:支持运行时修改任务参数而不中断服务 生命周期控制:提供Start/Stop方法管理引擎运行状态 示例代码演示了如何创建任务(如每5秒执行)、更新任务频率和删除任务。系统设计考虑了扩展性,建议了任务持久化、执行监控、分布式原创 2025-07-26 16:20:02 · 77 阅读 · 0 评论 -
golang实现一个规则引擎,功能包括实时增加、修改、删除规则
本文介绍了一个用Go实现的轻量级规则引擎,核心功能包括:1) 支持实时增删改规则;2) 基于条件函数评估触发动作;3) 使用读写锁保证并发安全。引擎采用map存储规则,通过Data类型传递上下文数据,并提供了规则执行的基本流程。文章还提出了扩展方向(如优先级、持久化)和优化建议(索引、并行执行)。示例代码展示了温度监控场景的应用,演示了规则管理全流程。该实现简洁高效,适合需要灵活规则管理的应用场景。原创 2025-07-26 16:16:51 · 67 阅读 · 0 评论 -
广告业务中A/B实验分桶方法比较:UID VS DID
广告业务实验分桶策略分析 在广告业务实验中,用户ID分桶和设备ID分桶各具特点:用户ID分桶适合长期价值评估和跨设备行为分析,能避免实验污染但隐私风险较高;设备ID分桶则更适配短期设备端效果测试,隐私友好但存在多设备行为割裂问题。对于游客模式,设备ID分桶通常是更优选择,因其能保证匿名性并快速获取短期行为数据,尽管需解决设备ID稳定性等问题。实际应用中,建议根据实验目标(长期/短期)、隐私要求和业务场景灵活选择,或采用混合分桶策略。合规处理ID(如哈希加密)和数据关联设计是关键实施要点。原创 2025-07-26 16:01:04 · 82 阅读 · 0 评论 -
广告业务中使用用户id分桶和使用设备id分桶实验,哪个更优
摘要:广告业务A/B测试中,用户ID分桶和设备ID分桶各有利弊。用户ID分桶能避免跨设备污染,保证用户级指标准确性,但依赖登录状态;设备ID分桶覆盖全量流量但存在跨设备问题。最佳实践建议:以注册用户为主的业务优先用户ID分桶,匿名流量场景使用设备ID分桶,或采用混合模式。广告业务尤其应关注用户唯一性,推荐优先用户ID分桶,必要时补充设备ID方案以确保实验准确性。(149字)原创 2025-07-26 15:54:33 · 58 阅读 · 0 评论 -
广告LTV详细算法公式、不同行业广告LTV均值参考、如何实际运营和提升LTV
广告LTV(生命周期价值)指单个用户在其生命周期内带来的累计广告收入。核心计算公式包括单用户LTV(各日ARPU累加)和用户组LTV(总收入/用户数)。行业差异显著:游戏类30日LTV约0.2-8元,工具类0.4-1.5美元。提升LTV的四大策略为:优化用户留存、提高广告单价(eCPM)、调节广告密度与时机、丰富广告形态,并需结合数据监测和用户分层运营。关键是通过留存延长生命周期,同时平衡广告收益与用户体验。原创 2025-07-24 11:32:56 · 466 阅读 · 0 评论 -
广告中的LTV(Lifetime Value:广告带来的用户终身价值)
广告LTV(用户生命周期广告价值)是衡量用户在使用产品期间为平台带来的累计广告收益指标。它通过统计用户观看激励视频、点击横幅广告等广告行为产生的总收入,帮助评估广告投放ROI、优化变现策略。计算公式为某批用户累计广告收入除以用户数,常见指标包括7日LTV、30日LTV等。与付费LTV不同,广告LTV专指广告收入价值,是游戏、工具类App变现分析的核心指标。例如某用户30天内产生0.32元广告收入,其30日广告LTV即为0.32元。原创 2025-07-24 11:27:01 · 75 阅读 · 0 评论 -
【推荐算法课程二】推荐算法介绍-深度学习算法
深度学习在推荐系统中的应用逐渐成为主流,AutoRec和Deep Crossing是两种典型模型。AutoRec采用自编码器结构,通过单隐层神经网络重建用户评分,分为基于物品和基于用户两种形式。Deep Crossing则构建了完整的深度学习架构,包含Embedding层、Stacking层、残差单元层和Scoring层,解决了特征稠密化、自动交叉组合和优化目标拟合等关键问题。两种模型分别代表了早期和进阶的深度学习推荐方法,为后续研究奠定了基础。原创 2025-06-12 20:07:23 · 147 阅读 · 0 评论 -
【推荐算法课程一】推荐算法介绍-基础算法
《深度学习-推荐系统》教程摘要:该教程系统介绍了现代推荐系统的架构与演进历程。推荐系统通过分析用户信息、物品信息和场景信息,构建预测模型对候选物品进行排序。架构包含数据层(生成样本、特征和监控数据)、模型层(召回、排序和混排模块)、训练层(离线训练和在线更新)。数据层处理原始数据,模型层实现多级筛选,训练层兼顾全局优化和实时更新。本教程详细解析了推荐系统的工程实现方法,是入门的优秀指南。(150字)原创 2025-06-11 20:39:46 · 302 阅读 · 0 评论 -
广告推荐系统中模型训练中模型的结构信息、Dense数据、Sparse数据
下面结合广告推荐系统常见的深度学习模型(比如 Wide & Deep、DeepFM、Two-Tower 等),介绍一下“模型的结构信息”、Dense 数据和 Sparse 数据在训练过程中的角色及处理方式。Sparse 数据(高维离散型特征)Dense 数据(数值型特征)原创 2025-06-11 14:50:12 · 189 阅读 · 0 评论 -
原生广告&UG广告
本文解析两种主流广告形式:原生广告和UG广告。原生广告强调与环境融合,通过信息流、推荐位等形式提供有价值内容,具有高接受度和转化率,但需注意合规标识。UG广告利用用户生成内容(如测评、直播)实现低成本社交化种草,凭借真实感提升传播效果。两者均注重用户体验,但原生广告侧重专业内容植入,UG广告依赖用户自发分享。成功的核心在于平衡商业目标与内容价值,实现自然触达。原创 2025-06-11 13:57:47 · 247 阅读 · 0 评论 -
广告系统中后链路数据为什么要使用流批一体技术?流批一体技术是什么?
在大规模广告系统的后链路(离线和实时特征计算、模型训练与上线、效果监控等)中,往往既有对海量历史数据的批量计算需求(离线特征、离线模型训练、报表汇总),又有对在线请求的低延迟实时计算需求(实时特征、在线打分、实时监控/告警)。传统将二者割裂、用 Lambda 架构(Batch + Speed 层)分别实现,带来了:• 代码与业务逻辑重复• 数据语义/计算结果不一致• 运维成本、调度复杂度翻倍• 开发调试效率低。原创 2025-06-10 20:43:49 · 488 阅读 · 0 评论 -
客资广告(线索广告)
核心在于明确目标人群、优化创意与表单体验,并结合持续跟进及数据分析,实现潜在客户到最终成交的全流程闭环。线索广告(Lead Ads)是以获取潜在客户信息(如姓名、电话、邮箱、职务等)为目的的广告形式。用户填写完表单信息后,广告主即可获得可跟进的客户线索,用于后续销售或精准营销。• 针对不同客户阶段可设计多版本表单——初步兴趣版 vs. 进一步跟进版。• 控制在3~5项以内(姓名、手机号、地区、需求等)• 突出价值主张(如“免费报告”、“限时优惠”)• 提供实用价值(白皮书下载、免费体验、优惠券)原创 2025-06-10 17:03:06 · 265 阅读 · 0 评论 -
搜广推特征数据变更灰度为什么实现很困难
综上所述,搜广推特征数据的灰度发布涉及到数据生产、存储、服务、模型训练、实验评估等多个环节的协同,对系统架构的灵活性、数据管理能力和实验平台能力都提出了极高的要求,因此实现起来非常困难。通常需要强大的基础设施(如支持版本的特征平台、灵活的数据流处理框架、完善的A/B测试系统)来支撑。搜广推(搜索、广告、推荐)系统中的特征数据变更进行灰度发布之所以实现困难,主要源于这些系统本身的复杂性、对数据一致性的高要求以及变更可能带来的深远影响。原创 2025-06-05 19:06:09 · 86 阅读 · 0 评论 -
运维视角下的广告系统之理解广告索引级联
摘要:广告索引采用级联(多层索引)设计主要为了高效处理多维度查询。级联索引通过分层过滤(如地域→业务线→关键词),能快速排除无关项,显著提升检索性能,同时节省存储空间。以美团为例,其广告系统按照地域、业务线等维度构建层级结构,支持毫秒级响应。这种设计还能灵活扩展新维度,并控制键空间爆炸。实际系统中常结合倒排索引等技术优化,满足高并发需求。类似架构也广泛应用于滴滴、阿里等企业的广告和推荐系统。原创 2025-06-03 15:14:14 · 80 阅读 · 0 评论