
自然语言处理
蓝一潇、薛定谔的猫
东北大学在读 深度学习爱好者 国内某nlp实验室实习生
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
感性理解Word2Vec - 它的神奇以及原理
神奇的word2vec现在“词向量”已经不是一个多么新的概念了。它由2014年被facebook实验室提出,现在是一个处理自然语言的常用工具之一。甚至现在在我实习的实验室里,学长和老师嘲笑这个方法在某些任务里面有多么多么挫。。但事实上在很多的与序列无关的任务里面还是很有用的!最初知道word2vec以及“词向量”的时候是高考完的暑假,当时对于机器学习十分感兴趣,尤其对词向量充满了好奇。它可以做...原创 2019-01-26 12:20:23 · 261 阅读 · 0 评论 -
keras 分批训练 详解2 - keras 进阶教程
keras 分批训练2今天讲的是如何使用keras进行分批训练(也叫增量训练、增量学习、在线训练)的第二种方法,上一种方法在这里:https://blog.csdn.net/weixin_42744102/article/details/87272950上一次讲的是fit_generator的方法,那个方法搞不清每层的名字就很容易报错、计算错了step和batch也很麻烦,需要自己写的生成器...原创 2019-05-10 21:05:40 · 3156 阅读 · 1 评论 -
Keras ValueError: No data provided for "dense_1_input". Need data for each key in: ['dense_1_input']
今天使用keras分批训练model时使用model.fit_generator方法报错:ValueError: No data provided for “dense_1_input”. Need data for each key in: [‘dense_1_input’]最后通过分析keras源码,找到了解决方案:将用于产生batch的generator的返回值的格式写成一个字典,长这样:...原创 2019-02-13 17:31:05 · 5169 阅读 · 5 评论 -
gensim的word2vec模型分批学习
自然语言处理的数据量通常很大,当数据集已经没办法装在整个内存里面了, 我们就需要分批构建word2vec。代码如下:from gensim.models.word2vec import Word2Vecfrom tqdm import tqdmWORK_PATH = '.'class Word2VecTrainingMaster(): def __init__(self, ...原创 2019-02-13 09:25:08 · 1792 阅读 · 4 评论 -
Attention is all you need pytorch实现 源码解析03 - 模型的训练(2)- transformer模型的代码实现以及结构
我们继续分析著名的attention is all you need 论文的pytorch实现的源码解析。由于项目很大,所以我们会分开几讲来进行讲解。上一讲连接在此:Attention is all you need pytorch实现 源码解析01 - 数据预处理、词表的构建 - https://blog.csdn.net/weixin_42744102/article/details/8...原创 2019-02-12 14:37:43 · 3421 阅读 · 6 评论 -
Attention is all you need pytorch实现 源码解析02 - 模型的训练(1)- 模型的训练代码
我们今天继续分析著名的attention is all you need 论文的pytorch实现的源码解析。由于项目很大,所以我们会分开几讲来进行讲解。上一讲连接在此:Attention is all you need pytorch实现 源码解析01 - 数据预处理、词表的构建 - https://blog.csdn.net/weixin_42744102/article/details...原创 2019-02-12 11:25:01 · 3395 阅读 · 4 评论 -
Attention is all you need pytorch实现 源码解析01 - 数据预处理、词表的构建
我们今天开始分析著名的attention is all you need 论文的pytorch实现的源码解析。由于项目很大,所以我们会分开几讲来进行讲解。先上源码:https://github.com/Eathoublu/attention-is-all-you-need-pytorch大家可以先自行下载并理解。今天是第一讲,我们先讲解数据的预处理部分:preprocess.py项目结构...原创 2019-02-11 17:23:37 · 5712 阅读 · 5 评论 -
Attention is all you need pytorch实现 源码解析04 - 模型的测试以及翻译
今天是最后一节对Attention is all you need pytorch实现的解析,这一节非常的简单,我将会一笔带过。上一讲连接在此:Attention is all you need pytorch实现 源码解析01 - 数据预处理、词表的构建 - https://blog.csdn.net/weixin_42744102/article/details/87006081Atte...原创 2019-02-16 12:52:13 · 1971 阅读 · 1 评论 -
在大量数据的情况下打乱数据 - 机器学习 训练技巧
我们在机器学习训练模型的时候常常需要将数据打乱,否则,假如一个数据集前半部分target是1,后半部分target是0,这样训练出来的效果很不好,很有可能模型会过拟合后半部分的样本,尤其是数据量很大的时候,尤其是你的模型要训练几天几夜的时候。别问我为什么,血一样的教训……如果数据量小,那么我们只需要使用random.shuffle函数就可以,具体用法在:https://blog.csdn.net...原创 2019-02-15 16:34:35 · 5690 阅读 · 1 评论 -
gensim加载word2vec模型报错:UnicodeDecodeError: 'utf-8' codec can't decode byte 0x80 in position 0: invalid
这句话是一个很常见的错误,是在加载gensim预训练的word2vec模型时的报错,当时查资料找到加载模型应该用model = KeyedVectors.load_word2vec_format(‘model_1.w2v’)然而这个方式很开心的报错了。后尝试改成model = KeyedVectors.load(‘model_1.w2v’)就可以了。...原创 2019-01-29 14:45:03 · 6558 阅读 · 5 评论 -
keras 用LSTM搭建一个语言情感分类器 - keras 进阶教程
鉴于很多人最近问我LSTM的API在keras中怎么用,怎么总是报错,我觉得写一个博客,搭建一个最小化的语言情感分类模型,这样大家就能一通百通了。这个讲解会主要侧重于LSTM中的数据维度处理。这里就不谈LSTM的原理了,大家肯定没少看到过那个经典的LSTM cell结构图。那么,第一步做什么呢?首先,我们需要一个数据集,用word2vec来做word embeding(即将词转化为向量的形...原创 2019-05-27 23:06:19 · 2524 阅读 · 0 评论