
算法大本营
文章平均质量分 95
kkchenjj
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图像处理之图像增强算法:自适应直方图均衡化原理
CLAHE的基本思想是在图像的每个子区域中独立地应用直方图均衡化,同时限制每个子区域的对比度增强程度,以防止局部对比度过高。此外,CLAHE还使用双线性插值来融合不同子区域的均衡化结果,确保图像边界处的平滑过渡,避免出现明显的块状效应。自适应直方图均衡化(Adaptive Histogram Equalization, AHE)是一种局部图像增强技术,特别适用于改善图像的对比度,尤其是在图像的某些区域过暗或过亮时。然而,传统的AHE方法在处理高对比度区域时可能会引入过多的噪声。原创 2024-07-29 05:19:40 · 1239 阅读 · 0 评论 -
图像处理之图像复原算法:图像修复:图像处理基础理论
图像增强是图像处理中的一个重要步骤,旨在改善图像的视觉效果或使图像更适合后续的处理和分析。图像增强技术可以分为两大类:空间域增强和频率域增强。空间域增强:直接在图像像素上操作,如点运算(灰度变换、对比度拉伸)、邻域运算(平滑、锐化)。频率域增强:在图像的傅里叶变换域中操作,如低通滤波、高通滤波、带通滤波。盲复原算法是在不知道模糊核的情况下进行图像复原的方法。它通常需要同时估计模糊核和恢复原图像,因此算法更为复杂,但实用性更强。原创 2024-07-29 05:15:32 · 1572 阅读 · 0 评论 -
图像处理之图像复原算法:深度学习去噪:生成对抗网络(GAN)去噪技术
生成对抗网络(Generative Adversarial Networks,简称GAN)是一种深度学习模型,由Ian Goodfellow等人在2014年提出。GAN由两个神经网络组成:生成器(Generator)和判别器(Discriminator)。生成器的目标是生成与真实数据分布相似的数据,而判别器的目标是区分生成器生成的数据和真实数据。这两个网络通过对抗的方式共同学习,最终生成器能够生成高质量的、与真实数据难以区分的合成数据。原创 2024-07-28 09:04:53 · 3078 阅读 · 5 评论 -
图像处理之图像复原算法:逆滤波:基于深度学习的逆滤波算法
深度学习是机器学习的一个分支,它模仿人脑的神经网络结构,通过多层非线性变换模型,从数据中自动学习特征表示。深度学习模型,如卷积神经网络(CNN),在图像处理领域取得了显著的成果,能够处理复杂的图像复原任务,如去噪、超分辨率、去模糊等。# 均方误差损失函数# 结构相似性指数损失函数# 感知损失函数loss = 0# 创建模型实例# 定义优化器# 定义损失函数在图像处理领域,逆滤波算法一直是复原模糊图像的关键技术。原创 2024-07-28 09:03:10 · 1683 阅读 · 1 评论 -
图像处理之图像复原算法:盲去卷积:盲去卷积算法原理
图像复原的目标是尽可能地从退化图像中恢复出原始图像。传统图像复原方法主要包括逆滤波、维纳滤波、约束最小二乘滤波等。盲去卷积(Blind Deconvolution)是一种在不知道卷积核(模糊核)的情况下,从模糊图像中恢复原始清晰图像的图像复原技术。在图像处理中,图像模糊通常是由成像系统中的运动、光学失真或大气湍流等因素引起的,这些因素可以被建模为一个卷积核。盲去卷积的目标是在没有这个卷积核的先验知识下,仅使用模糊图像本身来估计卷积核并恢复原始图像。原创 2024-07-28 09:00:10 · 1428 阅读 · 0 评论 -
图像处理之图像复原算法:非局部均值去噪:非局部均值去噪算法原理
通过上述步骤,我们详细介绍了非局部均值去噪算法的实现过程,包括搜索相似块、计算权重和加权平均去噪。这些步骤共同作用,能够有效地去除图像中的噪声,同时保持图像的细节和结构。在实际应用中,根据图像的特性和噪声的类型,可能需要调整算法的参数,以达到最佳的去噪效果。原创 2024-07-28 08:57:57 · 1072 阅读 · 0 评论 -
图像处理之图像复原算法:Lucy-Richardson去卷积:Lucy-Richardson算法原理
点扩散函数(PSF)是成像系统对点光源响应的数学描述。在图像复原算法中,PSF是关键的输入之一,因为它提供了关于图像模糊特性的信息。PSF可以是实测的,也可以是基于成像系统特性的理论模型。在图像复原领域,评估复原图像的质量是至关重要的。这不仅涉及到图像的视觉效果,还包括了数学上的度量。在图像复原领域,Lucy-Richardson算法作为去卷积技术的一种,虽然在处理模糊图像时表现出色,但其局限性也不容忽视。计算复杂度高。原创 2024-07-28 08:56:37 · 1745 阅读 · 0 评论 -
图像处理之图像复原算法:超分辨率重建:图像处理基础理论
在图像处理领域,图像可以被视为一个二维函数,通常表示为fxy,其中x和y是空间坐标,而f在该点的值代表图像的亮度或颜色。对于灰度图像,fxy是一个标量值,表示该点的灰度级;而对于彩色图像,fxy可以是一个向量,包含红、绿、蓝(RGB)或其它颜色空间的分量。原创 2024-07-28 08:54:52 · 1043 阅读 · 0 评论 -
图像处理之图像复原算法:BM3D去噪:BM3D算法原理与结构
BM3D(Block-Matching and 3D filtering)算法是图像去噪领域中的一种高效方法,它结合了块匹配和三维滤波技术,能够显著提高图像的去噪效果。高保真度:BM3D能够有效保留图像的细节和边缘,避免了传统去噪方法中常见的模糊现象。适应性强:BM3D对不同类型的噪声(如高斯噪声、椒盐噪声等)都有较好的去噪效果。处理效率:通过块匹配和分组,BM3D能够并行处理图像,提高了处理速度。视觉效果:在主观视觉评价中,BM3D去噪后的图像质量通常高于其他去噪算法。原创 2024-07-28 08:53:21 · 1305 阅读 · 0 评论 -
图像处理之图像检测与识别算法:基于深度学习的图像分类(如ResNet)
深度学习是机器学习的一个分支,它模仿人脑的神经网络结构,通过多层非线性变换来学习数据的复杂表示。深度学习模型能够自动从原始数据中提取特征,这在图像处理领域尤为重要,因为它可以处理图像的像素级信息,识别出有意义的特征,如边缘、纹理和形状,从而实现图像分类、目标检测和识别等任务。原创 2024-07-28 08:51:35 · 572 阅读 · 0 评论 -
图像处理之图像检测与识别算法:基于深度学习的图像分类(如ResNet)
深度学习是机器学习的一个分支,它模仿人脑的神经网络结构,通过多层非线性变换来学习数据的复杂表示。深度学习模型能够自动从原始数据中提取特征,这在图像处理领域尤为重要,因为它可以处理图像的像素级信息,识别出有意义的特征,如边缘、纹理和形状,从而实现图像分类、目标检测和识别等任务。原创 2024-07-28 08:50:36 · 426 阅读 · 0 评论 -
图像处理之图像检测与识别算法:YOLO(You Only Look Once):深度学习与神经网络基础
深度学习框架提供了构建和训练神经网络的工具和API。TensorFlow:由Google开发,支持广泛的机器学习和深度学习模型。PyTorch:由Facebook开发,以灵活性和动态计算图著称。Keras:一个高级神经网络API,可以作为TensorFlow的前端,易于使用,适合快速原型设计。自动微分:自动计算梯度,用于反向传播。优化器:如梯度下降、Adam等,用于更新网络权重。预训练模型:可以直接使用或作为基础进行迁移学习。数据处理工具:如数据增强、批处理等,用于准备训练数据。原创 2024-07-28 08:49:34 · 1408 阅读 · 0 评论 -
图像处理之图像检测与识别算法:SURF特征匹配:SURF算法的数学基础
SURF算法通过Hessian矩阵的行列式检测图像中的关键点,然后通过非极大值抑制、尺度空间检测和方向赋值等步骤筛选关键点,以确保关键点的稳定性和描述性。这些关键点可以用于图像匹配、对象识别和场景理解等任务。原创 2024-07-28 08:47:53 · 551 阅读 · 0 评论 -
图像处理之图像检测与识别算法:SSD(Single Shot MultiBox Detector):SSD算法的结构与原理_2024-07-18_02-55-53
SSD (Single Shot MultiBox Detector) 算法是在2016年由Wei Liu等人提出的,作为目标检测领域的一个重要里程碑。在SSD出现之前,目标检测算法通常需要通过多阶段的处理,如候选区域生成和分类,来识别图像中的物体。这种多阶段的方法虽然在准确性上表现良好,但在实时性和计算效率上存在局限。SSD算法的创新之处在于它将整个检测过程整合到一个网络中,实现了端到端的检测,大大提高了检测速度,同时保持了较高的检测精度。原创 2024-07-28 08:46:40 · 678 阅读 · 0 评论 -
图像处理之图像检测与识别算法:SIFT特征匹配:SIFT特征匹配算法基础
SIFT(Scale-Invariant Feature Transform)算法,由David Lowe在1999年提出,并在2004年进行了详细阐述。SIFT算法的诞生,旨在解决图像在不同尺度、旋转、光照条件以及存在噪声的情况下,如何准确地检测和描述图像中的关键点,以实现图像的匹配和识别。在计算机视觉领域,SIFT算法因其鲁棒性和精确性,成为了图像特征检测和描述的经典算法之一。原创 2024-07-28 08:45:45 · 1551 阅读 · 0 评论 -
图像处理之图像检测与识别算法:SIFT特征匹配与SURF算法对比分析
特征匹配算法是通过在图像中寻找具有独特性的关键点,并描述这些关键点的局部特征,从而在另一图像中找到对应的点。这一过程对于图像拼接、对象识别、三维重建等应用至关重要。SIFT(Scale-Invariant Feature Transform)和SURF(Speeded Up Robust Features)是两种广泛使用的特征匹配算法,它们在性能和效率上各有优势。尺度空间极值检测:通过构建尺度空间,检测出图像中的关键点,这些关键点在不同的尺度下具有极值特性。关键点定位。原创 2024-07-28 08:43:40 · 781 阅读 · 0 评论 -
图像处理之图像检测与识别算法:ORB特征匹配:图像特征匹配基础
ORB算法是基于FAST角点检测和BRIEF描述符的,但进行了多项改进以提高其性能和鲁棒性。FAST(Features from Accelerated Segment Test)是一种快速角点检测算法,它通过比较像素点周围一定半径内的像素值来判断该点是否为角点。BRIEF(Binary Robust Independent Elementary Features)则是一种二进制描述符,它通过比较关键点周围随机像素对的灰度值来生成描述符。原创 2024-07-28 08:42:37 · 1008 阅读 · 0 评论 -
图像处理之图像检测与识别算法:Mask R-CNN:MaskRCNN在自动驾驶中的应用
输入图像:首先,输入图像通过主干网络进行特征提取。区域提议:RPN根据特征图生成多个候选区域(Region of Interest, ROI)。ROI Align:对每个ROI进行特征提取,确保与真实边界框对齐。分类与边界框回归:对每个ROI进行分类和边界框微调。掩膜预测:最后,掩膜分支预测每个实例的分割掩膜。原创 2024-07-28 08:41:41 · 1088 阅读 · 0 评论 -
图像处理之图像检测与识别算法:基于HOG的实时行人检测系统设计
HOG(Histogram of Oriented Gradients)特征,即方向梯度直方图,是一种在计算机视觉中用于目标检测的特征描述子。HOG特征通过计算和统计图像局部区域的梯度方向直方图来捕捉物体的形状信息,对于行人检测等目标识别任务具有较高的准确性和鲁棒性。图像预处理:将图像转换为灰度图,并进行高斯平滑。梯度计算:在每个像素点上计算梯度的大小和方向。方向直方图构建:将图像分割成小的连通区域(cell),在每个cell内统计梯度方向的直方图。块归一化。原创 2024-07-28 08:38:06 · 1141 阅读 · 0 评论 -
图像处理之图像检测与识别算法:Haar特征人脸检测基础理论
Haar特征是一种在图像处理和计算机视觉领域中用于物体检测的特征描述方法。它由Alfred Haar在1909年提出,最初用于函数的正交分解,后来被应用于图像特征提取。Haar特征主要基于图像的局部区域对比度,通过计算不同区域的像素平均值之差来描述图像的特征。积分图(Integral Image)是一种用于快速计算图像局部区域和的技巧,尤其适用于Haar特征的计算。积分图的构建和使用可以极大地提高特征计算的速度,从而在实时应用中实现高效的人脸检测。原创 2024-07-28 08:32:42 · 725 阅读 · 0 评论 -
图像处理之图像检测与识别算法:Faster R-CNN:R-CNN算法详解
Faster R-CNN进一步改进了Fast R-CNN,其中最显著的改进是引入了区域提议网络(Region Proposal Network, RPN)。RPN是一个全卷积网络,它在卷积特征图上滑动,为每个位置生成多个候选区域。RPN网络使用锚点(Anchors)来预测目标的边界框和分类,从而替代了Fast R-CNN中基于选择性搜索的候选区域生成方法。原创 2024-07-28 08:30:59 · 1108 阅读 · 0 评论 -
图像处理之图像压缩算法:JPEG 2000:图像压缩基础理论
JPEG 2000, 作为一项先进的图像压缩技术,自其问世以来,就以其卓越的压缩性能和丰富的功能特性在图像处理领域占据了一席之地。与传统的JPEG标准相比,JPEG 2000采用了小波变换和熵编码等更为先进的技术,提供了无损和有损压缩模式,以及渐进式传输和区域感兴趣(ROI)编码等特性,极大地提升了图像压缩的灵活性和质量。原创 2024-07-28 08:28:54 · 2489 阅读 · 0 评论 -
图像处理之图像压缩算法:JPEG:图像压缩算法概论
JPEG是一种基于离散余弦变换(DCT)的图像压缩标准,由国际标准化组织(ISO)和国际电信联盟(ITU)联合制定。颜色空间转换:将RGB颜色空间转换为YCbCr颜色空间,其中Y表示亮度,Cb和Cr表示色度。图像分割:将图像分割成8x8像素的块。离散余弦变换(DCT):对每个块应用DCT,将像素值转换为频率域的系数。量化:对DCT系数进行量化,这是JPEG压缩中数据丢失的主要来源。熵编码:使用哈夫曼编码或算术编码对量化后的系数进行编码,以进一步减少文件大小。原创 2024-07-27 13:02:40 · 1788 阅读 · 14 评论 -
图像处理之图像压缩算法:Huffman Coding:图像压缩算法概述
Huffman编码是一种广泛应用于图像压缩的熵编码技术,它基于消息出现的频率来分配编码长度,从而实现数据的高效压缩。高效压缩:Huffman编码能够根据像素值出现的频率分配最短的编码,对于频率高的像素值使用较短的编码,频率低的使用较长的编码,从而在不损失信息的情况下减少存储空间。无损压缩:Huffman编码是一种无损压缩算法,这意味着解压缩后的图像与原始图像完全相同,没有信息丢失。适应性强。原创 2024-07-27 13:01:04 · 814 阅读 · 5 评论 -
图像处理之图像压缩算法:HEIF:图像压缩基础理论
JPEG是最广泛使用的图像压缩格式之一,特别适用于照片和具有大量颜色变化的图像。它使用有损压缩,通过DCT变换和量化来减少文件大小。图像压缩技术是现代数字通信和存储的基础,无损和有损压缩各有优势,适用于不同的场景。JPEG、PNG、WebP和HEIF等格式提供了多样化的选择,以满足不同需求。随着技术的发展,如HEIF这样的高效格式将越来越受到青睐,为用户提供更高质量的图像和更高效的存储与传输。更高级的预测技术。原创 2024-07-27 12:58:05 · 1435 阅读 · 0 评论 -
图像处理之图像分割算法:图割算法:图割算法的数学基础
在图割算法中,考虑一个无向图GVEG=(V,E)GVE,其中VVV是节点集,EEE是边集。每个节点v∈Vv \in Vv∈V代表图像中的一个像素,每条边e∈Ee \in Ee∈E连接两个像素,其权重wew_ewe表示这两个像素之间的相似度。割CCC是图GGG的一个子集,它将图分割为两个互不相交的部分。在图像分割中,割CCC可以被视为前景和背景的分割。图是由节点(顶点)和边组成的集合。原创 2024-07-27 12:55:53 · 1625 阅读 · 0 评论 -
图像处理之图像分割算法:基于深度学习的分割(如U-Net):基于深度学习的全景分割
在基于深度学习的图像分割任务中,选择合适的数据集至关重要。描述:Pascal VOC 2012 是一个广泛使用的数据集,包含20个类别,用于物体检测和语义分割任务。图像数量:大约有10,582张图像,分为训练、验证和测试集。Cityscapes描述:Cityscapes 数据集专注于城市街景的分割,包含5000张高质量标注的图像,以及20000张粗略标注的图像。图像数量:训练集有2975张,验证集有500张,测试集有1525张。COCO描述。原创 2024-07-27 12:49:56 · 2556 阅读 · 0 评论 -
图像处理之图像分割算法:GrabCut算法:图像分割算法概览
交互性: GrabCut算法允许用户通过简单的标记(矩形框或粗略的轮廓)来指导分割过程,提高了分割的准确性和效率。自动细化: 一旦用户提供了初始标记,算法能够自动细化边界,减少用户的手动调整。背景和前景的区分: 通过迭代优化,GrabCut能够有效地区分图像的背景和前景,即使在复杂背景下也能保持良好的分割效果。颜色和纹理信息的利用: 算法结合了颜色和纹理信息,能够处理具有相似颜色但不同纹理的区域,提高了分割的鲁棒性。原创 2024-07-27 12:48:21 · 892 阅读 · 0 评论 -
图像处理之图像分割算法:K均值聚类:K均值聚类算法原理
K均值聚类算法在图像处理领域,尤其是图像分割中,是一种广泛应用且效果显著的无监督学习方法。它通过迭代过程将图像中的像素点划分为K个不同的簇,每个簇由一个中心点代表,从而实现对图像的初步分割。初始化中心点:首先随机选择K个像素点作为初始的簇中心。分配像素点:计算每个像素点与K个中心点的距离,将每个像素点分配给距离最近的中心点所在的簇。更新中心点:对于每个簇,计算所有像素点的平均值,将这个平均值作为新的中心点。迭代优化:重复步骤2和3,直到簇中心不再发生显著变化或达到预设的迭代次数。原创 2024-07-27 12:47:08 · 2237 阅读 · 0 评论 -
图像处理之图像分割算法:Mean Shift分割:MeanShift算法原理与应用
图像分割算法种类繁多,每种算法都有其特定的应用场景和优缺点。Mean Shift算法的核心思想是通过迭代的方式,将每个数据点移动到其邻域内的平均位置,直到所有数据点不再移动或移动距离小于某个阈值。这个过程可以看作是数据点在特征空间中寻找密度最大的位置。通过上述实践案例分析,我们可以看到Mean Shift算法在图像分割中的强大能力。它不仅能够有效地将图像分割成具有相似特征的区域,还能够简化后续的图像分析任务。在实际应用中,合理选择算法参数(如带宽和最大迭代次数)对于获得良好的分割效果至关重要。原创 2024-07-27 12:45:39 · 965 阅读 · 0 评论 -
图像处理之图像分割算法:超像素分割在图像处理中的应用
Watershed算法是一种基于地形学原理的分割方法,它将图像视为一个地形,其中每个像素的高度由其灰度值或颜色值决定。算法的目标是找到地形中的“分水岭”,即不同区域之间的边界。原创 2024-07-27 12:43:47 · 1493 阅读 · 0 评论 -
图像处理之图像分割算法:分水岭变换:分水岭变换原理与应用
在图像处理和计算机视觉领域,图像分割是将图像划分为多个区域或对象的关键步骤。每个区域或对象通常具有相似的属性,如颜色、纹理或形状。图像分割的重要性在于它为后续的图像分析提供了基础,例如目标检测、识别和跟踪。通过分割,我们可以从复杂场景中提取出感兴趣的区域,减少计算量,提高处理效率和准确性。原创 2024-07-27 12:42:44 · 805 阅读 · 0 评论 -
图像处理之图像分割算法:区域生长:基于纹理的区域生长算法
区域生长算法是一种基于像素间相似性的图像分割方法。它从一个或多个种子像素开始,根据预定义的相似性准则,逐步将与种子像素相似的相邻像素合并到同一区域中。基于纹理的区域生长算法进一步利用纹理特征作为相似性准则,能够更准确地识别和分割具有复杂纹理的图像区域。纹理特征是图像分割中用于描述图像局部区域结构的重要属性。灰度级变化:图像中像素值的分布情况,可以使用灰度直方图或灰度共生矩阵来描述。方向性:纹理元素的方向信息,通过计算图像梯度或使用Gabor滤波器来获取。频率。原创 2024-07-27 12:41:49 · 859 阅读 · 0 评论 -
图像处理之图像分割算法:区域生长:区域生长算法原理与实现
图像分割算法种类繁多,每种算法都有其适用场景和优缺点。阈值分割:基于像素强度的简单分割方法,适用于图像背景和前景对比度高的情况。边缘检测:通过检测图像中的边缘来分割对象,如Canny边缘检测算法。区域生长:从一个或多个种子点开始,根据相似性准则逐步扩展区域,直到满足停止条件。分水岭算法:基于地形学原理,将图像中的像素视为地形上的点,通过寻找分水岭线来分割区域。图割算法:将图像分割问题转化为图论中的最小割问题,通过求解最小割来实现分割。深度学习方法。原创 2024-07-27 12:40:45 · 2155 阅读 · 0 评论 -
阈值分割:高级阈值分割算法与研究
除了阈值分割,图像分割还有许多其他方法,包括基于边缘的分割、基于区域的分割、基于模型的分割和基于学习的分割等。每种方法都有其适用场景和优缺点,选择合适的方法对于提高分割效果至关重要。原创 2024-07-27 12:38:58 · 768 阅读 · 0 评论 -
阈值分割:彩色图像阈值分割
通过上述步骤,我们可以使用Python和OpenCV有效地实现彩色图像的阈值分割,并对分割结果进行可视化和初步分析。这为更复杂的图像处理任务,如对象识别和跟踪,提供了基础。色彩空间的选择:RGB、HSV、Lab 等色彩空间各有优势,选择合适的色彩空间可以简化分割过程。阈值的确定:手动设定、Otsu 方法、自适应阈值等,不同的方法适用于不同的场景。多阈值分割:对于复杂图像,单一阈值可能无法满足需求,多阈值分割可以更精确地分离目标。后处理技术:如形态学操作(开运算、闭运算),可以去除噪声,优化分割结果。原创 2024-07-27 12:37:56 · 1804 阅读 · 0 评论 -
GrabCut算法:GrabCut算法的数学基础
GraphCut算法是一种基于图论的图像分割方法,它将图像分割问题转化为图的最小割问题。在GraphCut中,图像被建模为一个图,其中像素点是图的节点,节点之间的边表示像素点之间的相似性。算法通过构建一个包含源节点和汇节点的图,其中源节点与前景像素相连,汇节点与背景像素相连,然后寻找这个图的最小割,从而实现图像的分割。GrabCut算法通过定义能量函数来优化图像分割。能量函数由两部分组成:数据项能量EDE_DED和光滑项能量ESE_SES。数据项能量EDE_DED。原创 2024-07-27 10:08:05 · 1235 阅读 · 0 评论 -
阈值分割:Otsu算法原理与实现
在图像处理领域,图像分割是将图像划分为多个具有相似属性的区域的过程。这一步骤对于后续的图像分析、目标识别和图像理解至关重要。通过图像分割,我们可以从复杂图像中提取出感兴趣的对象或区域,为后续的高级处理提供基础。例如,在医学成像中,图像分割可以帮助医生更准确地识别肿瘤边界;在自动驾驶技术中,它能帮助车辆识别道路、行人和障碍物。原创 2024-07-27 09:05:13 · 1616 阅读 · 0 评论 -
阈值分割:全局阈值分割方法
灰度直方图是描述图像中灰度级分布情况的一种统计图表。它以图像的灰度级为横坐标,以该灰度级出现的频率或像素数量为纵坐标,直观地展示了图像中各灰度级的分布情况。灰度直方图对于理解图像的亮度分布、对比度以及进行图像处理和分析(如阈值分割)非常有帮助。原创 2024-07-27 08:44:05 · 1073 阅读 · 0 评论 -
阈值分割:灰度直方图分析
灰度直方图是描述图像中灰度级分布的一种统计工具。它以图像中每个灰度级的像素数量为依据,绘制出一个直方图,横轴表示灰度级,纵轴表示该灰度级出现的频率。灰度直方图能够直观地反映出图像的亮度分布情况,对于图像分割算法中的阈值选择具有重要的指导意义。原创 2024-07-27 08:32:33 · 1343 阅读 · 0 评论