依赖背包 -- The more the better(越多越好)

本文探讨了一种战略游戏中的宝物获取问题,通过01背包和依赖背包算法解决ACboy如何在N座城堡中攻克M个以获取最大宝物。使用树状DP和邻接表实现,详细解析了代码及转移方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题面

ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物。但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先攻克其他某一个特定的城堡。你能帮ACboy算出要获得尽量多的宝物应该攻克哪M个城堡吗?

Input

第一行包括2个整数,N,M.(1 <= M <= N <= 200);在接下来的N行里,每行包括2个整数,a,b. 在第 i 行,a 代表要攻克第 i 个城堡必须先攻克第 a 个城堡,如果 a = 0 则代表可以直接攻克第 i 个城堡。b 代表第 i 个城堡的宝物数量, b >= 0。

Output

对于每个测试实例,输出一个整数,代表ACboy攻克M个城堡所获得的最多宝物的数量。

思路

  • 每个城堡可以选攻击一次或者放弃,所以是01背包
  • 有由于有依赖条件,所以是依赖背包
  • 转移方程: dp[i][j] = max(dp[i][j], dp[i][j-k]+dp[son][k])

解救你于水深火热的代码

#include <bits/stdc++.h>
#define ll long long
#define il inline 
#define re register

using namespace std;
int n, m, ans;
int dp[210][210];
//一般的树上dp[i][j], 表示选i为节点, 选j个子节点的答案 
vector<int> t[210];
//邻接表存图(方便);将约束条件变成边 

il void dfs(int x) {
	for(re int i = 0; i < t[x].size(); ++i) {
		int son = t[x][i];
		if(t[son].size()) dfs(son);
		for(re int j = m; j >= 1; --j) {//枚举长度 (p.s  不明白为什么从后往前枚举是对的)
			for(re int k = 1; k < j; ++k) {//子节点的长度 
				dp[x][j] = max(dp[x][j], dp[x][j-k] + dp[son][k]);
			}
		}
	}
}
int main() {
	memset(dp, 0, sizeof(dp));//初始化吧 
	scanf("%d%d", &n, &m);
	m++;//将0作为总根 
	for(re int i = 0; i <= n; ++i) t[i].clear();
	for(re int i = 1; i <= n; ++i) {
		int a, b;
		scanf("%d%d", &a, &b);
		t[a].push_back(i);//说明i是a的子节点 
		for(re int j = 1; j <= m; ++j) dp[i][j] = b;//选i,所有答案都包括了本身的值 
	}
	dfs(0);
	ans = dp[0][m];
	printf("%d\n", ans);
	return 0;
}

每博美句(培养程序狗的艺术细菌)
玲珑骰子安红豆,入骨相思知不知。
琉璃梳子抚青丝,画心牵肠痴不痴。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值