题面
ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物。但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先攻克其他某一个特定的城堡。你能帮ACboy算出要获得尽量多的宝物应该攻克哪M个城堡吗?
Input
第一行包括2个整数,N,M.(1 <= M <= N <= 200);在接下来的N行里,每行包括2个整数,a,b. 在第 i 行,a 代表要攻克第 i 个城堡必须先攻克第 a 个城堡,如果 a = 0 则代表可以直接攻克第 i 个城堡。b 代表第 i 个城堡的宝物数量, b >= 0。
Output
对于每个测试实例,输出一个整数,代表ACboy攻克M个城堡所获得的最多宝物的数量。
思路
- 每个城堡可以选攻击一次或者放弃,所以是01背包
- 有由于有依赖条件,所以是依赖背包
- 转移方程: dp[i][j] = max(dp[i][j], dp[i][j-k]+dp[son][k])
解救你于水深火热的代码
#include <bits/stdc++.h>
#define ll long long
#define il inline
#define re register
using namespace std;
int n, m, ans;
int dp[210][210];
//一般的树上dp[i][j], 表示选i为节点, 选j个子节点的答案
vector<int> t[210];
//邻接表存图(方便);将约束条件变成边
il void dfs(int x) {
for(re int i = 0; i < t[x].size(); ++i) {
int son = t[x][i];
if(t[son].size()) dfs(son);
for(re int j = m; j >= 1; --j) {//枚举长度 (p.s 不明白为什么从后往前枚举是对的)
for(re int k = 1; k < j; ++k) {//子节点的长度
dp[x][j] = max(dp[x][j], dp[x][j-k] + dp[son][k]);
}
}
}
}
int main() {
memset(dp, 0, sizeof(dp));//初始化吧
scanf("%d%d", &n, &m);
m++;//将0作为总根
for(re int i = 0; i <= n; ++i) t[i].clear();
for(re int i = 1; i <= n; ++i) {
int a, b;
scanf("%d%d", &a, &b);
t[a].push_back(i);//说明i是a的子节点
for(re int j = 1; j <= m; ++j) dp[i][j] = b;//选i,所有答案都包括了本身的值
}
dfs(0);
ans = dp[0][m];
printf("%d\n", ans);
return 0;
}
每博美句(培养程序狗的艺术细菌)
玲珑骰子安红豆,入骨相思知不知。
琉璃梳子抚青丝,画心牵肠痴不痴。