二分图判定+二分图最大匹配+二分图最小点覆盖(匈牙利算法)(含uva11419 SAM I AM题解)

本文介绍了二分图的概念,包括如何判定一个图是否为二分图,以及二分图的最大匹配和最小点覆盖问题。通过匈牙利算法解释了二分图最大匹配的过程,并提供了最小点覆盖与最大匹配数之间的König定理。此外,还以UVA11419题为例,展示了如何应用这些理论解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:定义

二分图:是图论中的一种特殊模型。若能将无向图G=(V,E)的顶点V划分为两个交集为空的顶点集,并且任意边的两个端点都分属于两个集合,则称图G为一个为二分图。

二:判定

根据定义,可以知道如果对于一个图,我们将它的节点用黑白染色,那么如果它是二分图,它的每一条边的两端,都可以实现一黑一白。

所以在判定时,只需要根据这样的性质,对于每一个点,把它所有的未遍历的子节点染上和它不一样的颜色,如果最后没有哪一条边两端颜色一样,就说明它是一个二分图,否则就不是。

在代码实现的时候可以写成对于每一个点,把未遍历的子接点染上与它不同的颜色,如果存在子节点已经染过色了并且与它颜色相同,可以直接判定它不是一个二分图。

看一个这样的图

会有这样的染色过程

最后4和5都是白色,gg。

到此我们就得到了整个图的算法:

  1. 选取一个未染色的点u进行染色
  2. 遍历u的相邻节点v:若v未染色,则染色成与u不同的颜色,并对v重复第2步;若v已经染色,如果 u和v颜色相同,判定不可行退出遍历。
  3. 若所有节点均已染色,则判定可行。

可以用dfs实现它

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
struct node
{
	int nxt,to;
}edg[200010];
int head[100010],n,m;
int num,col[100010];
bool flag;
void add(int a,int b)
{
	num++;
	edg[num].nxt=head[a];
	edg[num].to=b;
	head[a]=num;
}	
void dfs(int cur,int color)
{
	col[cur]=color;
	for(int t=head[cur];t;t=edg[t].nxt)
	{
		int v=edg[t].to;
		if(col[v]==col[cur])
		{
			cout<<"NO";
			flag=1;
			exit(0);
		}
		if(!col[v])
		{
			dfs(v,-color);
		}
	}
}
int main()
{
	cin>>n>>m;
	for(int i=1;i<=m;i++)
	{
		int a,b;
		cin>>a>>b;
		add(a,b);
		add(b,a);
	}
	dfs(1,1);
	if(!flag)
	cout<<"YES";
}

(如果图是不连通的,要枚举起点)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值