【机器学习】使用UE4制作KITTI格式数据集

本文介绍了如何使用UE4制作与KITTI格式兼容的3D数据集,详细解析了KITTI数据集中物体标签的参数,包括type、truncate、Occluded、Alpha、Bbox、Dimensions、Location和Rotation_y,并讨论了如何处理不同坐标系之间的转换问题,特别是从UE4生成的数据转换到KITTI坐标系的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

简介

KITTI数据集简介 

Label解析

type

truncate

Occluded

Alpha

Bbox

Dimensions

Location

Rotation_y


简介

项目中使用到一个3D bounding box的开源项目,项目中使用的是KITTI自动驾驶数据集,队友使用NVIDIA Deep learning Dataset Synthesizer生成我们项目所需的虚拟数据集,需要将json格式的虚拟数据集转换成KITTI格式的数据集来使用。做完这一部分会自己尝试一下生成虚拟数据集部分。

要完成格式转换就需要将KITTI数据集label的各项参数搞懂。本文前部分会总结一些我现在所理清的参数含义,参考了KITTI的devkit中的readme文档和matlab部分的代码,还有很多没有完全搞清的部分。先记录搞明白的部分。

KITTI数据集简介 

The data acquisition platform of KITTI dataset is equipped with two gray cameras, two color cameras, a velodyne 64 line 3D lidar, four optical lenses and a GPS navigation system.

The entire dataset we are using now is based on CAM2.

KITTI数据集的数据采集平台装配有2个灰度摄像机,2个彩色摄像机,一个Velodyne64线3D激光雷达,4个光学镜头,以及1个GPS导航系统。

  • 相机:x 轴向右,y 轴向下,z 轴向前

因为本项目不需要激光雷达和GPS等其他设备,只需要图像摄像头所得到的图像来生成3D Bounding box,所以只关注了Cam2的内容,训练使用的数据集也只是Left color images。

如果要使用虚拟引擎来制作虚拟数据集,坐标系需要和KITTI中相机的坐标系相对应。

Label解析

先从训练集来看,label文件中每个object有15个参数,每个参数的具体解释可以在devkit的readme文件中找到。

举例来说,这张图片是训练集中的其中一张

截取label文件的其中一句来分析:

Car 0.00 0 -1.56 564.62 174.59 616.43 224.74 1.61 1.66 3.20 -0.69 1.69 25.01 -1.59 

对应devkit中readme文件对label的解析:

type

- type : Car

        物体的分类为车

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值