数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
示例 1:
输入: [1, 2, 3, 2, 2, 2, 5, 4, 2]
输出: 2
解题思路:
本题常见解法如下:
- 哈希表统计法: 遍历数组 nums ,用 HashMap 统计各数字的数量,最终超过数组长度一半的数字则为众数。此方法时间和空间复杂度均为 O(N) 。
- 数组排序法: 将数组 nums 排序,由于众数的数量超过数组长度一半,因此 数组中点的元素 一定为众数。此方法时间复杂度 O(N log_2 N)
- 摩尔投票法: 核心理念为 “正负抵消” ;时间和空间复杂度分别为 O(N) 和 O(1) ,是本题的最佳解法。
摩尔投票法:
票数和: 由于众数出现的次数超过数组长度的一半;若记 众数 的票数为 +1+1 ,非众数 的票数为 -1−1 ,则一定有所有数字的 票数和 > 0>0 。
票数正负抵消: 设数组 nums 中的众数为 x ,数组长度为 n 。若 nums 的前 a 个数字的票数和 = 0 ,则 数组后 (n−a) 个数字的票数和一定仍 >0 (即后(n−a) 个数字的 众数仍为 x )。
算法原理:
为构建正负抵消,假设数组首个元素n1n_1n1为众数,遍历统计票数,当发生正负抵消时,剩余数组的众数一定不变 ,这是因为(设真正的众数为 xxx ):
- 当n1=x:n_1=x:n1=x: 抵消的所有数字中,有一半是众数xxx。
- 当n1≠x:n_1\neq x:n1=x: 抵消的所有数字中,少于或等于一半是众数xxx。
利用此特性,每轮假设都可以 缩小剩余数组区间 。当遍历完成时,最后一轮假设的数字即为众数(由于众数超过一半,最后一轮的票数和必为正数)。
算法流程:
- 初始化: 票数统计 votes=0votes = 0votes=0,众数 xxx;
- 循环抵消: 遍历数组 numsnumsnums 中的每个数字 numnumnum;
当 票数 votesvotesvotes 等于 000 ,则假设 当前数字 numnumnum 为 众数 xxx ;
当 num=xnum = xnum=x时,票数 votesvotesvotes 自增 1;否则,票数 votesvotesvotes 自减 1 。 - 返回值: 返回众数 xxx 即可。
复杂度分析:
时间复杂度 O(N)O(N)O(N): N 为数组 nums 长度。
空间复杂度 O(1)O(1)O(1) : votes 变量使用常数大小的额外空间。
class Solution {
public:
int majorityElement(vector<int>& nums) {
int x, votes = 0;
int len = nums.size();
for(int i=0; i<len; i++)
{
if(votes == 0)
x = nums[i], votes++;
else if(nums[i] == x)
votes ++;
else
votes --;
}
return x;
}
};