前言
最近做毕设使用到yolov5,该模型为ultralytics公司的一个开源产品,由Glenn大佬实现,有很多合作的开发者参与了该项目,开发迭代速度非常快,三天两头就有更新。为了实现一个完整的毕业设计流程,就需要实现YOLOv5模型的训练、验证到最终的落地,也就是部署。
训练相对简单,只需要跟着官方教程即可,根据特定数据集进行预处理并训练👉👉链接
训练并验证后则需要考虑部署,具体部署方案有:
- ONNX:该模型格式可以在不同的平台所需的模型格式之间进行转化,也是我最初的方案,但转过去转过来都转不到Android能用的格式
- CoreML:该格式的模型可以部署到Apple上,那至少需要有苹果两件套(iphone和Mac),前者作为部署端,后者用于开发苹果应用程序。可是我没有Mac
- TFLite:Google的轻量级推理库,这种TensorFLow Lite格式的模型文件可以部署到基于Android的移动端上,这也是最理想的一种方式
转化方法
官方的转化方法
官方的转化代码的转化方式为PyTorch > ONNX >