什么是拓扑
我们从集合出发,在代数结构上我们得到群的性质
我们从拓扑结构上,我们能得到拓扑空间
拓扑空间
一个集合X上一个拓扑是X的子集的一个族 ℑ \Im ℑ
它满足以下条件:
( i ) ∅ (i) \varnothing (i)∅和 X X X都要在 ℑ \Im ℑ中
( i i ) ℑ (ii)\Im (ii)ℑ的任意子族的元素的并都要在 ℑ \Im ℑ中
( i i i ) ℑ (iii)\Im (iii)ℑ的任意有限子族的元素的交都要在 ℑ \Im ℑ中
一个指定了拓扑 ℑ \Im ℑ的集合X叫做一个拓扑空间(拓扑空间指的是有序对( ℑ , X \Im,X ℑ,X),一般来说不专门提到 ℑ \Im ℑ
从某种角度来说,我们可以认为拓扑空间指的是一个集合X连同它的子集的一个族(拓扑空间指的是集合的某种组合),拓扑本身来说就是集合为元素的集合,这里我们引入幂集的概念 2 T 2^{\mathcal{T}} 2T, T ⊂ 2 T \mathcal{T} \subset 2^{\mathcal{T}} T⊂2T
X X X的子集的全部组合我们称之为幂集 2 X 2^X 2X
例子:
1.1:
X
=
{
a
,
b
,
c
,
d
,
e
,
f
}
,
ℑ
1
=
{
X
,
∅
,
{
a
}
,
{
c
,
d
}
,
{
a
,
c
,
d
}
,
{
b
,
c
,
d
,
e
,
f
}
}
X=\{a,b,c,d,e,f\},\Im_{1} =\{X,\varnothing,\{a\},\{c,d\},\{a,c,d\},\{b,c,d,e,f\}\}
X={a,b,c,d,e,f},ℑ1={X,∅,{a},{c,d},{a,c,d},{b,c,d,e,f}}则
ℑ
1
\Im_{1}
ℑ1满足上述的性质,
ℑ
1
\Im_{1}
ℑ1为X上的一个拓扑
1.2:
X
=
{
a
,
b
,
c
,
d
,
e
}
,
ℑ
2
=
{
X
,
∅
,
{
a
}
,
{
c
,
d
}
,
{
a
,
c
,
e
}
,
{
b
,
c
,
d
}
}
X=\{a,b,c,d,e\},\Im_{2} =\{X,\varnothing,\{a\},\{c,d\},\{a,c,e\},\{b,c,d\}\}
X={a,b,c,d,e},ℑ2={X,∅,{a},{c,d},{a,c,e},{b,c,d}},
{
a
}
∪
{
c
,
d
}
⊈
ℑ
2
\{a\}\cup\{c,d\} \nsubseteq \Im_{2}
{a}∪{c,d}⊈ℑ2,则
ℑ
2
\Im_{2}
ℑ2不是X上的拓扑
1.3
X
=
{
a
,
b
,
c
,
d
,
e
}
,
ℑ
3
=
{
X
,
∅
,
{
a
}
,
{
f
}
,
{
a
,
c
,
f
}
,
{
b
,
c
,
d
,
e
,
f
}
}
X=\{a,b,c,d,e\},\Im_{3} =\{X,\varnothing,\{a\},\{f\},\{a,c,f\},\{b,c,d,e,f\}\}
X={a,b,c,d,e},ℑ3={X,∅,{a},{f},{a,c,f},{b,c,d,e,f}},
{
a
}
∩
{
f
}
∩
{
a
,
c
,
f
}
⊈
ℑ
3
\{a\}\cap\{f\}\cap\{a,c,f\}\nsubseteq\Im_{3}
{a}∩{f}∩{a,c,f}⊈ℑ3,则
ℑ
3
\Im_{3}
ℑ3不是X上的拓扑
1.4
ℑ
4
\Im_{4}
ℑ4为
N
\mathbb{N}
N组成的所有有限子集,假设
A
i
=
i
,
i
A_i={i} ,i
Ai=i,i取遍所有大于1的整数。我们仔细想想,如果把所有的
A
i
A_{i}
Ai并在一起,那就组成了
N
\mathbb{N}
N,
N
\mathbb{N}
N为无穷集合,与拓扑并的性质违背,
ℑ
4
\Im_{4}
ℑ4为
N
\mathbb{N}
N组成的所有有限子集,
ℑ
4
\Im_{4}
ℑ4不是X上的拓扑