拓扑空间

什么是拓扑

我们从集合出发,在代数结构上我们得到群的性质
我们从拓扑结构上,我们能得到拓扑空间

拓扑空间

一个集合X上一个拓扑是X的子集的一个族 ℑ \Im

它满足以下条件:

( i ) ∅ (i) \varnothing (i) X X X都要在 ℑ \Im

( i i ) ℑ (ii)\Im (ii)的任意子族的元素的并都要在 ℑ \Im

( i i i ) ℑ (iii)\Im (iii)的任意有限子族的元素的交都要在 ℑ \Im

一个指定了拓扑 ℑ \Im 的集合X叫做一个拓扑空间(拓扑空间指的是有序对( ℑ , X \Im,X ,X),一般来说不专门提到 ℑ \Im

从某种角度来说,我们可以认为拓扑空间指的是一个集合X连同它的子集的一个族(拓扑空间指的是集合的某种组合),拓扑本身来说就是集合为元素的集合,这里我们引入幂集的概念 2 T 2^{\mathcal{T}} 2T, T ⊂ 2 T \mathcal{T} \subset 2^{\mathcal{T}} T2T

X X X的子集的全部组合我们称之为幂集 2 X 2^X 2X

例子:

1.1: X = { a , b , c , d , e , f } , ℑ 1 = { X , ∅ , { a } , { c , d } , { a , c , d } , { b , c , d , e , f } } X=\{a,b,c,d,e,f\},\Im_{1} =\{X,\varnothing,\{a\},\{c,d\},\{a,c,d\},\{b,c,d,e,f\}\} X={a,b,c,d,e,f},1={X,,{a},{c,d},{a,c,d},{b,c,d,e,f}} ℑ 1 \Im_{1} 1满足上述的性质, ℑ 1 \Im_{1} 1为X上的一个拓扑
1.2: X = { a , b , c , d , e } , ℑ 2 = { X , ∅ , { a } , { c , d } , { a , c , e } , { b , c , d } } X=\{a,b,c,d,e\},\Im_{2} =\{X,\varnothing,\{a\},\{c,d\},\{a,c,e\},\{b,c,d\}\} X={a,b,c,d,e},2={X,,{a},{c,d},{a,c,e},{b,c,d}} { a } ∪ { c , d } ⊈ ℑ 2 \{a\}\cup\{c,d\} \nsubseteq \Im_{2} {a}{c,d}2,则 ℑ 2 \Im_{2} 2不是X上的拓扑
1.3 X = { a , b , c , d , e } , ℑ 3 = { X , ∅ , { a } , { f } , { a , c , f } , { b , c , d , e , f } } X=\{a,b,c,d,e\},\Im_{3} =\{X,\varnothing,\{a\},\{f\},\{a,c,f\},\{b,c,d,e,f\}\} X={a,b,c,d,e},3={X,,{a},{f},{a,c,f},{b,c,d,e,f}} { a } ∩ { f } ∩ { a , c , f } ⊈ ℑ 3 \{a\}\cap\{f\}\cap\{a,c,f\}\nsubseteq\Im_{3} {a}{f}{a,c,f}3,则 ℑ 3 \Im_{3} 3不是X上的拓扑
1.4 ℑ 4 \Im_{4} 4 N \mathbb{N} N组成的所有有限子集,假设 A i = i , i A_i={i} ,i Ai=i,i取遍所有大于1的整数。我们仔细想想,如果把所有的 A i A_{i} Ai并在一起,那就组成了 N \mathbb{N} N N \mathbb{N} N为无穷集合,与拓扑并的性质违背, ℑ 4 \Im_{4} 4 N \mathbb{N} N组成的所有有限子集, ℑ 4 \Im_{4} 4不是X上的拓扑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值