LCA

本文深入探讨了LCA算法的实现细节,通过递归深度优先搜索(DFS)预处理节点深度和最近公共祖先矩阵,实现快速查找任意两节点的最近公共祖先。文章详细解释了如何利用二进制提升技巧优化LCA查询效率,适用于解决复杂树结构中的路径和距离问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

function<void(int, int, int)> dfs;
	dfs = [&](int u, int fa, int depth)
	{
		dep[u] = depth;
		lca[u][0] = fa;
		for (int i = 1; i < MAX_POW; i++)
		{
			lca[u][i] = lca[lca[u][i - 1]][i - 1];
		}
		for (auto v : edg[u])
		{
			//cout << "2222222\n";
			if (v == fa)
				continue;
			dfs(v, u, depth + 1);
		}
	};
	dep[0] = -1;
	auto LCA = [&](int u, int v)
	{
		int i, len = 0;
		//cout << "the dep is " << dep[u] << "   " << dep[v] << endl;
		if (dep[u] > dep[v])
			swap(u, v);
		for (i = MAX_POW - 1; i >= 0; i--)
		{
			if (dep[lca[v][i]] >= dep[u])
			{
				v = lca[v][i];
				//cout << "v is " << v << endl;
				len += (1 << i);
			}
		}
		if (u == v)
			return len;
		for (int i = MAX_POW - 1; i >= 0; i--)
		{
			if (lca[u][i] != lca[v][i])
			{
				u = lca[u][i];
				v = lca[v][i];
				len += (1 << (i + 1));
			}
		}
		return len + 2;

	};
标题SpringBoot基于Web的图书借阅管理信息系统设计与实现AI更换标题第1章引言介绍图书借阅管理信息系统的研究背景、意义、现状以及论文的研究方法和创新点。1.1研究背景与意义分析当前图书借阅管理的需求和SpringBoot技术的应用背景。1.2国内外研究现状概述国内外在图书借阅管理信息系统方面的研究进展。1.3研究方法与创新点介绍本文采用的研究方法和系统设计的创新之处。第2章相关理论技术阐述SpringBoot框架、Web技术和数据库相关理论。2.1SpringBoot框架概述介绍SpringBoot框架的基本概念、特点和核心组件。2.2Web技术基础概述Web技术的发展历程、基本原理和关键技术。2.3数据库技术应用讨论数据库在图书借阅管理信息系统中的作用和选型依据。第3章系统需求分析对图书借阅管理信息系统的功能需求、非功能需求进行详细分析。3.1功能需求分析列举系统应具备的各项功能,如用户登录、图书查询、借阅管理等。3.2非功能需求分析阐述系统应满足的性能、安全性、易用性等方面的要求。第4章系统设计详细介绍图书借阅管理信息系统的设计方案和实现过程。4.1系统架构设计给出系统的整体架构,包括前后端分离、数据库设计等关键部分。4.2功能模块设计具体阐述各个功能模块的设计思路和实现方法,如用户管理模块、图书管理模块等。4.3数据库设计详细介绍数据库的设计过程,包括表结构、字段类型、索引等关键信息。第5章系统实现与测试对图书借阅管理信息系统进行编码实现,并进行详细的测试验证。5.1系统实现介绍系统的具体实现过程,包括关键代码片段、技术难点解决方法等。5.2系统测试给出系统的测试方案、测试用例和测试结果,验证系统的正确性和稳定性。第6章结论与展望总结本文的研究成果,指出存在的问题和未来的研究方向。6.1研究结论概括性地总结本文的研究内容和取得的成果。6.2展望对图书借阅管理
摘 要 基于SpringBoot的电影院售票系统为用户提供了便捷的在线购票体验,覆盖了从注册登录到观影后的评价反馈等各个环节。用户能够通过系统快速浏览和搜索电影信息,包括正在热映及即将上映的作品,并利用选座功能选择心仪的座位进行预订。系统支持多种支付方式如微信、支付宝以及银行卡支付,同时提供积分兑换和优惠券领取等功能,增强了用户的购票体验。个人中心允许用户管理订单、收藏喜爱的影片以及查看和使用优惠券,极大地提升了使用的便利性和互动性。客服聊天功能则确保用户在遇到问题时可以即时获得帮助。 后台管理人员,系统同样提供了全面而细致的管理工具来维护日常运营。管理员可以通过后台首页直观地查看销售额统计图,了解票房情况并据此调整策略。电影信息管理模块支持新增、删除及修改电影资料,确保信息的准确与及时更新。用户管理功能使得管理员可以方便地处理用户账号,包括导入导出数据以供分析。订单管理模块简化了对不同状态订单的处理流程,提高了工作效率。优惠券管理和弹窗提醒管理功能有助于策划促销活动,吸引更多观众。通过这样的集成化平台,SpringBoot的电影院售票系统不仅优化了用户的购票体验,也加强了影院内部的管理能力,促进了业务的发展和服务质量的提升。 关键词:电影院售票系统;SpringBoot框架;Java技术
内容概要:本文介绍了2025年中国网络安全的十大创新方向,涵盖可信数据空间、AI赋能数据安全、ADR(应用检测与响应)、供应链安全、深度伪造检测、大模型安全评估、合规管理与安全运营深度融合、AI应用防火墙、安全运营智能体、安全威胁检测智能体等。每个创新方向不仅提供了推荐的落地方案和典型厂商,还详细阐述了其核心能力、应用场景、关键挑战及其用户价值。文中特别强调了AI技术在网络安全领域的广泛应用,如AI赋能数据安全、智能体驱动的安全运营等,旨在应对日益复杂的网络威胁,提升企业和政府机构的安全防护能力。 适合人群:从事网络安全、信息技术、数据管理等相关工作的专业人士,尤其是负责企业信息安全、技术架构设计、合规管理的中高层管理人员和技术人员。 使用场景及目标:①帮助企业理解和应对最新的网络安全威胁和技术趋势;②指导企业选择合适的网络安全产品和服务,提升整体安全防护水平;③协助企业构建和完善自身的网络安全管理体系,确保合规运营;④为技术研发人员提供参考,推动技术创新和发展。 其他说明:文章内容详尽,涉及多个技术领域和应用场景,建议读者根据自身需求重点关注相关章节,并结合实际情况进行深入研究和实践。文中提到的多个技术和解决方案已在实际应用中得到了验证,具有较高的参考价值。此外,随着技术的不断发展,文中提及的部分技术和方案可能会有所更新或改进,因此建议读者保持关注最新的行业动态和技术进展。
&lt;think&gt;首先,用户的问题是关于在线LCA(最近公共祖先)算法的实现。我需要参考系统级指令和用户可见层的规则来构建回答。系统级指令:-所有行内数学表达式用$...$格式,例如:$x^2$。-独立公式用$$...$$格式并单独成段。-LaTeX语法必须正确。-使用中文回答。-生成相关问题。-回答中引用的段落末尾自然地添加引用标识,例如:[^1]。用户可见层:-回答结构清晰,帮助用户逐步解决问题。-尽量保证回答真实可靠。-参考站内引用:引用[1]和引用[2]是关于LCA的,但它们是示例引用,我需要基于真实知识回答。用户的问题是:&ldquo;我想查找关于在线LCA(最近公共祖先问题)的算法或实现请问在线最近公共祖先LCA算法实现&rdquo;所以,我需要解释在线LCA算法的实现。在线算法意味着程序可以逐个处理查询,而不需要所有输入一开始就给出。关键点:-在线LCA通常使用倍增法(BinaryLifting)实现。-这与引用[2]提到的相似:存储每个节点的第$2^j$个祖先。-引用[1]定义了在线算法:程序可以序列化处理输入。我的回答应该包括:1.解释什么是在线LCA算法。2.描述倍增法的实现步骤。3.提供伪代码或代码示例。4.添加引用标识(如果适用)。5.在末尾生成相关问题。结构回答:-先介绍在线LCA。-逐步解释算法。-给出实现代码(用代码块)。-最后生成相关问题。使用中文回答。数学表达式:-行内:例如,节点深度$depth[u]$。-独立公式:如果需要,比如公式。引用:-引用[1]和[2]是提供的,我可以自然地引用它们,因为它们相关。-例如,在解释倍增法时,引用[2]。实现细节:-倍增法:-预处理:存储每个节点的祖先数组。-查询:通过二进制提升找到LCA。-步骤:1.预处理树的深度和祖先信息。2.对于每个查询(u,v),调整到相同深度,然后一起向上跳。伪代码:-初始化祖先数组。-查询函数。生成相关问题:-类似于示例,生成3-4个相关问题。完整回答框架:1.解释在线LCA:在线算法允许逐个处理查询,而不需要所有查询输入一开始就给出。2.描述倍增法实现:-预处理:DFS遍历树,计算深度和直接父节点。-构建祖先表:对于每个节点和每个j(0到max_depth),存储$anc[i][j]$表示节点i的第$2^j$个祖先。-查询:将两个节点升到相同深度,然后逐步向上跳。3.提供代码示例(用Python或类似语言)。4.引用:[^1]用于在线算法定义,[^2]用于倍增法实现。5.生成相关问题。确保LaTeX正确:-行内:$depth[u]$,$2^j$-独立:如果有公式,如$$\text{LCA}(u,v)=\text{...}$$,但可能不需要。代码块:使用```language```格式。最终,生成相关问题:例如:1.在线LCA算法的复杂度分析?2.如何优化倍增法?3.在线LCA的应用场景?&lt;/think&gt;### 在线最近公共祖先(LCA)算法实现 在线最近公共祖先(LCA)算法用于在有根树中快速回答查询,即给定两个节点$u$和$v$,找到它们最近的公共祖先。在线算法的核心特点是它可以逐个处理查询输入,而无需预先知道所有查询[^1]。这与离线算法(如Tarjan算法)不同,后者需要一次性加载所有查询。在线LCA的常用实现是**倍增法(Binary Lifting)**,它通过预处理树的祖先信息来高效支持查询。下面我将逐步解释算法原理并提供代码实现。 #### 算法原理 倍增法的核心思想是预处理每个节点的$2^j$级祖先(即节点向上跳$2^j$步的祖先),从而在查询时通过二进制提升快速调整节点深度并找到LCA。算法分为两个阶段: 1. **预处理阶段**: - 通过DFS遍历树,计算每个节点的深度$depth[u]$和直接父节点(即$2^0$级祖先)。 - 构建一个祖先表$anc$,其中$anc[u][j]$存储节点$u$的第$2^j$个祖先。利用动态规划:$anc[u][j] = anc[ anc[u][j-1] ][j-1]$(当$j \geq 1$时)[^2]。 2. **查询阶段**: - 给定查询$(u, v)$,先将较深的节点向上跳到与另一个节点相同深度(使用二进制提升)。 - 然后,两个节点一起向上跳,直到它们的祖先相同。具体地,从最大$j$开始尝试跳跃,如果跳跃后祖先不同才执行跳跃。 算法的时间复杂度: - 预处理:$O(n \log n)$,其中$n$是节点数。 - 单次查询:$O(\log n)$。 空间复杂度:$O(n \log n)$。 #### 实现代码 以下是用Python实现的倍增法在线LCA算法。代码包括树的构建、预处理和查询函数。假设树以邻接表形式存储,节点编号从1开始。 ```python import math from collections import defaultdict, deque class LCA: def __init__(self, n, root=1): self.n = n self.root = root self.graph = defaultdict(list) self.depth = [0] * (n + 1) self.anc = defaultdict(lambda: [0] * (self.max_j + 1)) # 祖先表 def add_edge(self, u, v): &quot;&quot;&quot;添加树边&quot;&quot;&quot; self.graph[u].append(v) self.graph[v].append(u) def preprocess(self): &quot;&quot;&quot;预处理:计算深度和祖先表&quot;&quot;&quot; # 初始化最大跳跃指数 max_j = floor(log2(n)) self.max_j = math.floor(math.log2(self.n)) + 1 # BFS计算深度和直接父节点 queue = deque([self.root]) self.depth[self.root] = 1 parent = [0] * (self.n + 1) # 直接父节点 while queue: u = queue.popleft() for v in self.graph[u]: if v == parent[u]: continue parent[v] = u self.depth[v] = self.depth[u] + 1 queue.append(v) # 构建祖先表 anc[u][j] for j in range(self.max_j + 1): for i in range(1, self.n + 1): if j == 0: self.anc[i][j] = parent[i] # 2^0 = 1级祖先 else: prev = self.anc[i][j - 1] self.anc[i][j] = self.anc[prev][j - 1] if prev != 0 else 0 def query(self, u, v): &quot;&quot;&quot;在线查询LCA(u, v)&quot;&quot;&quot; # 确保u较深,否则交换 if self.depth[u] &lt; self.depth[v]: u, v = v, u # 将u跳到与v相同深度 diff = self.depth[u] - self.depth[v] j = 0 while diff: if diff &amp; 1: # 二进制位为1时跳跃 u = self.anc[u][j] diff //= 2 j += 1 # 如果此时u和v相同,则v是LCA if u == v: return u # 一起向上跳,直到祖先相同 for j in range(self.max_j, -1, -1): if self.anc[u][j] != self.anc[v][j]: u = self.anc[u][j] v = self.anc[v][j] return self.anc[u][0] # LCA是u的直接父节点 # 示例用法 if __name__ == &quot;__main__&quot;: # 构建树: 节点数n=5, 根节点为1 lca = LCA(n=5, root=1) edges = [(1, 2), (1, 3), (2, 4), (2, 5)] # 树边 for u, v in edges: lca.add_edge(u, v) lca.preprocess() # 预处理 # 在线查询示例 print(lca.query(4, 5)) # 输出: 2 (LCA of 4 and 5 is 2) print(lca.query(3, 4)) # 输出: 1 (LCA of 3 and 4 is 1) ``` #### 关键说明 - **在线处理**:此实现允许逐个添加查询(如`query(4, 5)`),无需预先知道所有查询,符合在线算法定义[^1]。 - **优化**:使用BFS代替DFS避免递归深度限制;二进制提升减少跳跃次数。 - **适用场景**:适用于动态查询环境,如实时网络路由或游戏AI中的路径查找。 如果您有特定树结构或查询序列,我可以帮助调整代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值