大模型的实践应用27-基于大模型的词向量与向量数据库pymilvus的应用与实践教程

大家好,我是微学AI,今天给大家介绍一下大模型的实践应用27-基于大模型的词向量与向量数据库pymilvus的应用与实践教程。在这篇文章中,我们将充满探索与创新的旅程中,我们踏入了一个神奇的世界——自然语言处理的领域。我们的目标是通过一段简洁而有力的Python代码,构建起一座桥梁,连接人类的语言世界与计算机的理解能力。让我们一起踏上这段奇妙之旅吧!
在这里插入图片描述

一、模型下载与加载

下载模型快照

先安装modelscope、sentence-transformers第三方库

pip install modelscope sentence-transformers

文章旅程的第一站是下载一个预训练好的模型快照。这就像前往一座神秘的图书馆,在那里收藏着无数智慧的结晶。我们使用的工具是modelscope,这是一个强大的平台,汇聚了各种各样的模型资源。在这里,我们使用snapshot_download函数来获取名为xiaobu-embedding-v2的模型快照。这一步就像是在图书馆里找到了一本珍贵的书籍,准备借阅回家细细研读。

### 构建用于大规模机器学习模型训练的向量数据库系统 #### 向量表示(Embeddings) 在构建向量数据库之前,了解向量表示至关重要。向量表示是一种将数据转换成数值型向量的技术,这些向量能够捕捉到原始数据中的语义信息。对于文本、图像或其他形式的数据,通过预训练的语言模型或自定义编码器将其映射至多维空间中的一点。 #### 设计向量数据库架构 设计合理的向量数据库架构是成功实施的关键一步。考虑到性能优化以及未来可能面临的扩展需求,在规划初期就应考虑如下因素: - **存储效率**:选择合适的索引结构以提高查询速度并减少磁盘占用。 - **可伸缩性**:支持水平分区(sharding),使得随着数据集的增长仍能保持高效运作。 - **兼容性**:确保所选解决方案易于其他组件集成,特别是当涉及到流处理平台时更为重要。 #### 技术栈的选择 针对不同应用场景和技术背景下的团队偏好,存在多种可行的技术组合方案可供选用。以下是几种常见的搭配方式之一: - 使用 Faiss 或 Annoy 实现高效的近似最近邻搜索算法; - 结合 Milvus 提供全面管理接口的同时享受其内置优化措施带来的便利; - 利用 Redis Modules 扩展传统键值对存储引擎的功能边界,满足特定业务场景的要求; ```python from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection # 创建连接 connections.connect("default", host="localhost", port="19530") fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True), FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=768) ] schema = CollectionSchema(fields) collection_name = "example_collection" milvus_collection = Collection(name=collection_name, schema=schema) data_to_insert = [[i for i in range(10)], [[float(j) for j in range(768)] for _ in range(10)]] milvus_collection.insert(data_to_insert) ``` 上述代码展示了如何利用 `pymilvus` 库创建一个名为 `example_collection` 的集合,并插入一些测试性的嵌入式数据样本[^1]。 #### 数据加载预处理 准备高质量的输入数据集同样不可忽视。这不仅限于收集足够的实例数量,还包括清洗噪声、标注类别标签等工作。此外,还需注意标准化特征尺度,以便更好地适应后续操作流程的需求。 #### 模型训练过程中的交互机制 为了让大型语言模型(LLM)有效地访问外部知识源——即本案例中的向量数据库,在二者之间建立有效的沟通渠道必不可少。一种常见做法是在每次请求前动态生成提示词(Prompt),引导 LLM 关注当前上下文中最为重要的方面,从而实现精准的知识检索和服务提供[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值