基于知识图谱嵌入和卷积-LSTM网络的药物-药物相互作用预测

论文提出了一种基于知识图谱嵌入和卷积-LSTM网络的药物-药物相互作用预测方法,通过整合DrugBank、PharmGKB和KEGG数据,构建大规模DDI知识图谱。实验表明,结合CNN和LSTM的Conv-LSTM网络在AUPR、F1-score和MCC上的性能达到0.94、0.92和0.80,优于传统机器学习模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于知识图谱嵌入和卷积-LSTM网络的药物-药物相互作用预测

论文题目:Drug-Drug Interaction Prediction Based on Knowledge Graph Embeddings and Convolutional-LSTM Network
论文来源:https://doi.org/10.1145/3307339.3342161
药理学物质之间的干扰会造成严重的医疗伤害。正确的预测Drug-Drug Interaction(DDI)可以减少这些医疗伤害,降低药物的开发成本。利用多种信息可以提高DDI预测的效率。在这个工作中,作者使用了DrugBank、PharmGKB和KEGG数据库的12,000个药物特征,并使用知识图谱(KGs)进行了整合。为了训练预测模型,首先使用各种嵌入方法将节点嵌入到图中。最后发现最好的组合是使用PyTorch-BigGraph (PBG)与复杂lstm网络和经典的基于机器学习的预测模型创建的复杂嵌入方法。
结果: 在5次交叉验证试验中,三种最佳分类器的模型平均集成方法在AUPR、F1-score和MCC上分别得到0.94、0.92、0.80的性能。
主要贡献:
1、建立了一个包含2,898,937个药物-药物相互作用对的数据集。
2、准备了一个大规模的DDIs整合KG,数据来自DrugBank, KEGG, OFFSIDES,和PharmGKB,有12亿个三元组。
3、用不同的设置评估了不同的KG嵌入技术来训练和评估ML模型。
4、最后得到将CNN和LSTM网络(称为convl -LSTM)结合起来用于预测DDIs,可以获得最高的准确性。
问题形式化:
DDIs的预测任务为一个链接预测问题,对于一个给定的DDI KG(Knowledge Graph)为G = (V,E), 其中的每个边e=(u,v)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值