LangChain框架入门02:环境搭建

在上一篇文章中,我们系统地了解了 LangChain 是什么、能做什么、核心模块有哪些,现在你可能有以下疑问:

  • 项目环境该怎么搭建?
  • 各个包之间有什么依赖关系?
  • 第一个 LangChain 应用应该从哪里写起?

本文将带你从零开始,搭建一个基于 LangChain 的 Python 开发环境,带你写出第一个 支持 OpenAI 模型的聊天机器人程序

一、LangChain包依赖关系

1.1 LangChain中的包

LangChain 框架被划分为多个独立包,用户可以根据实际需求自由选择所需模块,如果想要安装LangChain主包可以运行:

pip install langchain

LangChain主包虽然涵盖了框架的大部分功能,但其最大价值在于能够与各类模型提供商和主流数据库无缝集成,LangChain 主包本身并不包含这些第三方集成包的内容,下图表示了LangChain包之间的依赖关系。
在这里插入图片描述

langchain-core:除 langsmith 外,LangChain 中的其他所有包都依赖于该核心包,它提供了所有模块共享的基础类。

langchain:包含了langchain-core。

langchain-openai:OpenAI 相关工具的集成包

langchain-community:尚未独立拆分的第三方集成包。

langgraph:基于图的任务流程管理工具包,可以和LangChain无缝集成,也可以不使用LangChain单独安装

langsmith:LLM 应用的全生命周期管理平台,既可以与 LangChain 配合使用,也可以独立用于非 LangChain 的大模型应用场景。

二、项目搭建

2.1 Python环境

使用Python 版本为 3.10.11

python --version
Python 3.10.11

将pip的镜像源设置为腾讯云镜像,加快下载速度

pip config set global.index-url https://mirrors.cloud.tencent.com/pypi/simple
Writing to /Users/apple/.config/pip/pip.conf
pip config list
global.index-url='https://mirrors.cloud.tencent.com/pypi/simple'

2.2 创建虚拟环境

在开发 Python 项目时,首先创建项目文件夹:

mkdir langchain-study

创建虚拟环境,虚拟环境可隔离项目依赖,避免版本冲突

cd langchain-study 
python -m venv env

激活虚拟环境

source env/bin/activate

2.3 PyCharm设置虚拟环境

打开项目,在 Settings 中配置 Python 虚拟环境,创建本地解释器。

在这里插入图片描述

选择之前创建的Python虚拟环境。

在这里插入图片描述

选择之前创建的虚拟环境中的Python解释器。

在这里插入图片描述

2.4 依赖版本管理

首先,创建依赖管理文件 requirements.txt

touch requirements.txt

requirements.txt 中添加 LangChain 所需依赖,其中 python-dotenv 用于加载 .env 环境变量配置。

langchain==0.2.17
langchain-community==0.2.19
langchain-core==0.2.43
python-dotenv==1.0.1

导入依赖

pip install -r requirements.txt

2.5 创建配置文件

在项目根目录下创建 .env 文件,添加 OpenAI 的 API 地址和密钥

# OpenAI大模型
OPENAI_API_KEY=**
OPENAI_API_BASE=https://api.***.***/v1

三、第一个聊天机器人

新建一个 Python 文件,就可以开始编写第一个聊天机器人程序了。

在这里插入图片描述

代码如下:

import dotenv
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

# 读取env配置
dotenv.load_dotenv()

# 1.创建提示词模板
prompt = ChatPromptTemplate.from_template("{question}")

# 2.构建GPT-3.5模型
llm = ChatOpenAI(model="gpt-3.5-turbo")

# 3.创建输出解析器
parser = StrOutputParser()

# 4.执行链
chain = prompt | llm | parser
print(chain.invoke({"question": "请以表格的形式返回三国演义实力最强的十个人,并进行简要介绍"}))

执行结果:

在这里插入图片描述

四、总结

本文介绍了LangChain框架的包依赖结构及其模块划分,明确了主包 langchain 与核心包 langchain-core、第三方集成包如 langchain-openailangchain-community 之间的关系,并简要介绍了 langgraphlangsmith 这两个生态工具的功能与使用场景。

在项目实操部分,我们从零开始搭建了一个LangChain开发环境,涵盖了虚拟环境的创建、依赖版本管理、PyCharm解释器配置及.env配置文件的设置,并通过一个简单的聊天机器人示例,展示了 LangChain 与 OpenAI 模型的基础集成流程。

通过本文,相信你应该已经掌握了如何快速构建一个基于LangChain的Python开发环境,构建自己的第一个AI应用。后续将继续深入介绍LangChain的核心模块和高级用法,敬请期待。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值