无约束优化——梯度下降法

本文介绍了无约束优化的概念,并重点讲解了梯度下降法,这是一种用于求解函数最小值的数值解方法。通过分析梯度的方向和大小,找到函数下降最快的方向,利用学习率调整步长,逐步逼近最小值。虽然可能只找到局部最小值,但梯度下降法在机器学习和数据分析中广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  ddd元函数f(x⃗)f(\vec{x})f(x ),其中x⃗\vec{x}x ddd维向量,试图找到x⃗\vec{x}x 的某个取值x⃗∗\vec{x}^*x ,使f(x⃗∗)f(\vec{x}^*)f(x )达到f(x⃗)f(\vec{x})f(x )的最小值(或最大值),这就是我们常说的“最优化”或“优化”。我们知道,机器学习中用训练集训练模型,其实大多时候就是建立目标函数找到使目标函数达到最小值(或最大值)的模型参数的过程。这不就是在解决优化问题吗!所以,学好优化,刻不容缓!

  如果函数f(x⃗)f(\vec{x})f(x )没有附带约束条件,那这属于无约束优化;如果函数f(x⃗)f(\vec{x})f(x )附带的都是等式约束条件,那这属于等式约束优化;如果函数f(x⃗)f(\vec{x})f(x )附带有不等式约束条件,那这属于不等式约束优化。面对不同的优化问题,需要不同的方法来解决。

无约束优化

用数学的语言表达出来,就是
min⁡x⃗f(x⃗),\displaystyle \min_{\vec{x}} f(\vec{x}),x minf(x )

因为求最大值和最小值可以相互转化,所以都以求最小值为例。对于一元函数f(x)f(x)f(x)来说,大家都知道通过f′(x)=0f^\prime(x)=0f(x)=0来找到x∗x^*x使f(x∗)f(x^*)f(x)达到最小值。对于ddd元函数f(x⃗)f(\vec{x})f(x )来说,方法类似,通过方程组
∂f∂x1=0,∂f∂x2=0,…,∂f∂xd=0,①\frac{\partial f}{\partial x_1}=0,\frac{\partial f}{\partial x_2}=0,…,\frac{\partial f}{\partial x_d}=0,①x1f=0,x2f=0,,xdf<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值