- 博客(290)
- 资源 (3)
- 收藏
- 关注
原创 系统测试与落地优化:问题案例、性能调优与扩展方向
架构灵活:“调度层+代理层+知识库层+存储层”四层架构,支持按需扩展;功能全面:覆盖结构化数据查询、关系型知识检索、语义匹配、代码执行等多场景;落地性强:基于Docker部署,依赖工具均为开源或低成本服务,中小企业可直接复用;可扩展性高:支持新增代理、扩展知识库、对接外部系统,适配不同业务需求。
2026-02-03 16:27:36
374
原创 Supervisor核心:多代理调度逻辑与路由规则设计
定义路由决策结果:指定下一个代理或终止# 代理列表与决策选项以“状态管理+路由规则”为核心,实现多代理的有序协作;通过Prompt规则与代码保护双重机制,避免循环调用与无效调度;结构化输出与透明化日志,提升系统的可调试性与扩展性。Supervisor作为系统的“大脑”,成功解决了多代理“各自为战”的问题,让整个系统从“分散执行”升级为“协同高效”。而要让系统真正落地并发挥价值,还需要解决测试、优化与扩展等实际问题。
2026-02-02 17:21:54
346
原创 混合知识库搭建:本地Docker部署Neo4j图数据库与Milvus向量库
本文详细讲解了混合知识库的搭建全流程:从Neo4j图数据库的Docker部署、自动建模、Cypher优化,到Milvus向量数据库的分块策略、向量插入、RAG链构建,再到双库的协同逻辑,完整覆盖了“关系型知识+语义型知识”的存储与检索需求。混合知识库是多代理系统的“知识基石”,其设计的合理性直接决定了代理执行的精准度与效率。而要让这些知识库与代理高效协作,离不开Supervisor的智能调度——这正是我们下一篇博客的核心内容。
2026-02-01 23:44:23
759
原创 多代理实战:5个子代理的角色分工与ReAct架构实现
ReAct(Reasoning + Acting)是一种让智能体“先思考、再行动”的交互模式,核心逻辑是**“思考→工具调用→结果反馈→再思考”**的循环,完美契合复杂任务的分步执行需求。透明化决策:代理会明确思考“是否需要调用工具”“调用哪个工具”,而非直接输出结果;可回溯纠错:若工具调用失败或结果不满足需求,代理可基于反馈调整策略,重新尝试;灵活适配多工具:支持同时绑定多个工具,根据任务需求动态选择。所有代理基于ReAct架构构建,实现“思考→工具→反馈”的闭环执行;
2026-02-01 23:43:48
680
原创 从0到1搭建多代理混合检索RAG系统:架构设计与核心组件解析
本文作为系列博客的开篇,带大家完成了多代理混合RAG系统的“从0到1”搭建:明确了系统架构设计、核心组件分工、工作流程,完成了Docker环境部署、种子数据插入和知识库初始化,并通过测试验证了系统的基本功能。这套系统的核心优势在于“分工明确、多源融合、智能调度”,既能处理结构化数据查询,又能挖掘关系型知识和检索文本细节,为复杂场景下的智能应用提供了可落地的架构方案。
2026-01-30 11:05:05
739
原创 基于多Agent协同的代码智能开发系统:架构设计与全流程实现解析
用户发起代码开发相关需求,由前台可见的build、plan、general、explore Agent承接,通过调用标准化工具完成核心业务处理。每个任务Step执行完毕后,自动触发summary Agent进行代码变更统计与摘要生成,同时联动title Agent生成会话标题。系统实时监控Token资源使用情况,当资源接近模型上限时,触发compaction Agent执行会话压缩,保障模型稳定运行。
2026-01-29 14:53:03
638
原创 大语言模型实战(十八)——基于langchain1.0 构建传统 RAG Agent:从文档到知识库的完整之旅
Step 7: 定义 AgentStatenext: str# Step 8: 创建 vec_kg Agent 节点Answer:""",知识截止日期固定(训练数据年份)无法访问私密数据容易产生幻觉(编造答案)文档处理:加载 → 分割 → 向量化知识存储:向量数据库集成检索增强:基于语义的精准匹配智能生成:RAG Chain 组合多代理集成:LangGraph 框架应用📚 企业知识库问答💼 产品信息快速查询📖 文档智能总结🔍 复杂问题推理。
2026-01-28 16:36:48
887
原创 大语言模型实战(十七)——GraphRAG(图谱检索增强生成)介绍
GraphRAG(Graph Retrieval-Augmented Generation)是传统 RAG 的进阶形态,核心是将非结构化文本转化为结构化知识图谱,基于图谱的实体、关系、拓扑结构实现「语义 + 结构化推理检索」,结合大模型生成精准、全面、有逻辑的答案。其将图谱构建、图谱检索推理、结构化上下文重构、大模型生成深度融合为端到端流程,实现从“片段式检索” 到 “结构化推理”的升级,核心解决传统 RAG 上下文丢失、复杂推理能力弱的问题,同时提升答案可解释性、降低幻觉,简化知识更新维护流程。
2026-01-27 16:20:29
658
原创 langGraph从入门到精通(十一)——基于langgraph构建复杂工具应用的ReAct自治代理
LangGraph中的主要图类型是StateGraph。每个节点通过State中的参数获取有效信息,执行完节点的内部逻辑后,更新该State状态中的值。不同的状态模式,可以通过注释设置状态的特定属性(例如覆盖现有值)或添加到现有属性。设置边缘条件,有条件的原因是,根据节点的输出,可以采用多个路径之一。在该节点运行之前,所采用的路径是未知的(由大模型决定)。条件边缘:调用代理后,如果代理说要采取行动,那么应该调用调用工具的函数。如果代理说已经完成,那么就应该完成。
2026-01-26 15:11:45
619
1
原创 langGraph从入门到精通(十)——手动构建 Tool Calling Agent:基于langGraph的智能体闭环控制系统开发(含 ReAct 循环实战)
使用 Annotated 和 operator.add 实现消息列表的追加合并核心作用:定义智能体在运行过程中的“记忆”载体。为何这样实现确保了每次节点输出的新消息会被追加到现有列表中,而不是替换它,从而维持对话上下文。手动构建 Tool Calling Agent 是掌握 LangGraph 的必经之路。通过StateGraph管理状态,利用实现决策闭环,我们能够构建出极具智能的系统。复现失败快速排查清单检查是否有效。检查tools.py中的函数是否带有@tool装饰器。确保安装了。
2026-01-22 17:51:43
618
原创 langGraph从入门到精通(九)——基于LangGraph构建具备多工具调用与自动化摘要能力的智能 Agent
使用 Pydantic 定义工具的参数约束,确保 LLM 输出的准确性。# 定义状态:使用 Annotated 和 operator.add 实现消息自动追加# 定义工具参数模型name: str = Field(description="用户姓名")age: Optional[int] = Field(description="用户年龄")email: str = Field(description="邮箱地址")
2026-01-21 14:48:42
649
原创 langGraph从入门到精通(八)——基于LangGraph 实战实现ToolNode 工具节点与多工具自动调用机制
执行器配置、手动指令模拟、模型闭环集成。复现失败快速排查清单检查是否正确继承。确保ToolNode接收的是包含tool_calls的AIMessage。验证thread_id在config中是否已定义。欢迎评论区留言讨论核心主题相关的问题,若复现失败可留言你的系统版本+报错日志,我会及时回复~
2026-01-20 10:55:26
603
原创 langGraph从入门到精通(七)——基于 LangGraph 的结构化数据AI 代理自动入库实战
本文通过实现了从语义理解到持久化存储的全自动化。核心收获在于理解了如何通过条件边来管理 Agent 的执行路径。未来我们可以进一步扩展,在insert_db节点之前加入人工确认节点(Human-in-the-loop),确保入库数据的 100% 准确。欢迎评论区留言讨论核心主题相关的问题~
2026-01-19 11:32:54
724
原创 langGraph从入门到精通(六)——基于 LangGraph 实现结构化输出与智能 Router 路由代理
本文展示了 LangGraph 如何通过结构化输出与智能 Router 路由代理欢迎评论区留言讨论核心主题相关的问题~
2026-01-18 15:29:01
651
原创 langGraph从入门到精通(五)——基于 LangGraph 实现 Qwen 模型多轮对话 memory 与 JSON 提取
Annotated是 Python 3.9+ 引入的类型注解特性,允许我们在声明类型时附加元数据。在 LangGraph 中,它被用来绑定Reducer 函数。# 定义状态模式# 使用 Annotated 配合 operator.add 实现消息自动追加 # 核心状态定义Type (List[str]:定义了状态字段的数据类型。Metadata (:定义了更新指令。如果没有这个指令,LangGraph 默认会用新值覆盖旧值;有了它,系统才知道要执行“追加”操作。
2026-01-15 09:23:55
707
原创 langGraph从入门到精通(四)——基于LangGraph的State状态模式设计
掌握State 的定义模式是开启 LangGraph 高阶开发的大门。通过TypedDict我们建立了一套可预测的数据契约。划重点:状态在任何给定时间只包含来自一个节点的更新信息,但 LangGraph 内部的合并机制让它看起来像一个全局共享池。下一步,我们将研究如何通过Annotated与实现对话历史的自动追溯。欢迎评论区留言讨论核心主题相关的问题~
2026-01-14 16:29:14
724
原创 langGraph从入门到精通(三)——基于LangGraph的智能问答系统开发:Python单代理架构实战
作为LangChain生态中的明星级框架,通过图论(Graph)的思想完美解决了状态持久化与循环逻辑控制的问题。本文将带你通过一个亲测有效的实战案例,掌握LangGraph的底层构建流程、State状态模式设计以及单代理架构的实现。学习本文后,你将能够独立搭建具备状态管理能力的智能对话系统。在构建复杂的LLM应用时,如何精细化控制AI的执行流程与状态流转一直是开发者的痛点。执行代码后,我们可以看到系统成功调用了通义千问模型,并返回了结构化的answer。标记控制流转生命周期,实现数据在节点间的精准传递。
2026-01-14 14:21:45
806
原创 langGraph从入门到精通(二)——LangGraph底层原理与入门实践
大模型是 Agent 的 “大脑”:一边靠推理能力做任务规划,一边靠工具调用能力联动外部资源,同时结合记忆模块延续上下文,最终通过行动模块完成自主循环。模型(LLM)在 Agent 中的核心原理是以 LLM 为中枢,联动四大模块实现自主任务处理。
2026-01-14 11:13:35
602
原创 Qwen3-VL在华为昇腾 NPU 910B4 vLLM-Ascend完整部署指南
创建HwHiAiUser(UID 981) 和hisi组 (GID 1000),与 NPU 设备文件权限匹配配置环境脚本优化容器启动配置cd /root/qwen3vl # 构建镜像,标记为 latest docker build -t qwen3-vl-custom:latest . # 验证构建结果 docker images | grep qwen3-vl-custom。
2026-01-07 14:42:09
1722
1
原创 大语言模型实战(十六)——MCP完整语法指南:从零掌握Model Context Protocol的所有语法和模式
功能Server方法Client方法返回类型ResourcesResourcesstrToolsList[Tool]ToolsPromptsPromptsSampling返回采样请求解析并执行采样LLM回复。
2026-01-06 22:18:36
843
原创 大语言模型实战(十五)——MCP Sampling采样请求完全解析:LLM参数微调与人工干预的完美融合
Sampling不是MCP的新概念,而是对现有模式的优雅延伸【传统方式】Server → 定义提示词 → Client获取 → Client调用LLM → 返回结果【Sampling方式】Server → 发起采样请求 → Client接收 →Client[可选:调整参数] →Client调用LLM →Client[可选:修改结果] →返回给Server关键洞察:Sampling本质上是Server将LLM调用的主动权委托给Client,但参数完全由Server控制。知识点掌握度。
2026-01-05 23:36:16
891
原创 大语言模型实战(十四)——MCP Prompts提示系统深度解析:构建智能提示模板库与LLM集成方案
这是本案例的核心。# 【关键】定义提示词模板字典description="分析代码并提供改进建议",description="需要审查的代码",),description="编程语言",),description="审查重点(可选:performance, security, readability)",),description="解释代码的工作原理",description="需要解释的代码",),description="编程语言",),
2026-01-05 23:28:25
1075
原创 大语言模型实战(十三)——MCP工具系统完全指南:从零构建AI可调用的工具生态(FastMCP+LLM工具调用循环)
《MCP工具系统完全指南:从零构建AI可调用的工具生态(FastMCP+LLM工具调用循环)》当前AI应用面临一个核心痛点:LLM虽然能理解用户需求,但无法直接执行复杂的业务逻辑。传统方案是硬编码工具调用逻辑,导致代码耦合度高、扩展性差。MCP(Model Context Protocol)通过标准化的工具暴露机制,让Server可以定义任意工具,Client(包括LLM)可以动态发现和调用这些工具。这次实战我们将深入理解这个架构的精妙之处。通过本文,你将学会:环境要求:MCP工具系统采用Server-Cl
2026-01-05 22:51:02
1049
原创 大语言模型实战(十二)——MCP资源发现完整指南:从服务器暴露数据到客户端语义检索(含医学RAG系统)
MCP资源系统 = 文件服务器 + 向量化索引 + LLM智能查询知识点应用场景难度1️⃣ 资源列表服务器暴露数据清单⭐ 简单2️⃣ 资源读取客户端访问数据内容⭐ 简单3️⃣ 向量化文本→数学表示⭐⭐ 中等4️⃣ 语义检索FAISS加速搜索⭐⭐ 中等5️⃣ RAG系统LLM+文档回答⭐⭐⭐ 复杂代码优化简化⭐ 简单最实用的模式:示例2(资源读取) + 示例4(FastMCP)=最短路径生成RAG系统✨MCP Resources = 为LLM定制的文件服务系统,让AI应用以标准化、高效、安全。
2026-01-05 21:48:21
1154
原创 大语言模型实战(十一)——基于MAI-UI-8B 实现 Android UI 自动化:从元素定位到多步导航
本地部署MAI-UI-8B 推理服务(Docker + vLLM)封装工具和,开箱即用实测案例验证了元素定位和多步导航的准确性踩坑记录解决了 6 个常见问题,节省你 2 天调试时间Android 自动化测试(替代 UIAutomator)RPA 流程录制(可视化操作步骤)无障碍辅助工具(语音指令控制手机)
2026-01-05 09:02:26
1639
1
原创 大语言模型实战(十)——基于通义千问 + FastMCP 打造天气查询机器人
MCP(Model Context Protocol)是标准化的 LLM 工具调用协议。场景:用户问 AI “纽约天气怎样?方案实现方式问题方案 1:拒绝“我不知道”LLM 知识库有限,无法处理实时数据方案 2:散乱集成写 if/else 判断调用哪个 API每个 LLM 都要重新适配,维护困难方案 3:标准协议遵循 MCP 规范,让 LLM 自动发现并调用工具✅ 优雅、可扩展、LLM 无关MCP 就是方案 3 的标准协议。Server 端如何声明工具→装饰器Client 端如何发现工具→。
2026-01-03 23:53:16
857
1
原创 大语言模型实战(九)——从零到一:搭建基于 MCP 的 RAG 系统完整教程
RAG 是检索(Retrieval):从知识库中查找相关的信息生成(Generation):使用 LLM 根据检索的信息生成回答✅ 可以处理模型未见过的最新信息✅ 回答基于真实数据,降低幻觉风险✅ 支持添加自定义知识库✅ 更精准和可信的回答MCP 是一个标准化协议,允许应用与 LLM 模型进行安全的交互。定义自定义工具供 LLM 调用实现客户端-服务器架构标准化人类与 AI 的交互流程# 原理:使用向量距离度量相似度距离越小 → 相似度越高。
2025-12-31 00:34:56
946
原创 大语言模型实战(八)——MCP(Model Context Protocol):AI 与外部世界交互的标准化协议
MCP(Model Context Protocol,模型上下文协议)是 Anthropic 推出的开放标准协议,核心作用是为大语言模型(LLM)提供标准化的上下文交互方式,让 LLM 能够规范地对接各类外部数据源和工具,实现“模型-外部资源”的高效、统一通信。MCP是一种用于大模型工具调用的开源协议,提供标准化交互方式允许AI模型实时调用外部服务获取信息或执行操作采用分离式架构,模型与工具解耦,系统更灵活可扩展。
2025-12-29 23:15:21
871
原创 Python MCP 工具开发入门:Server、Client 和 LLM 集成
param1 } {param2 } "param1 } {param2 } "param1 } {param2 } "param1 } {param2 } "装饰器用于定义一个可以根据参数返回不同数据的接口。资源是不同于工具的数据取…特性Resource(资源)Tool(工具)用途提供只读或结构化的数据执行操作或计算调用方式参数传递URI 路径参数函数参数使用场景获取文件、查询数据库计算、修改数据你是一个数学助手。当用户问到加法、减法、乘法、除法时,请调用相应的工具。
2025-12-29 22:52:34
1304
原创 Dify从入门到精通(一)——Dify环境搭建
Dify是由国内团队开发的开源大语言模型应用开发平台,定位为“LLM App Development Platform”。它将大模型应用开发的全流程(Prompt工程、数据集管理、应用发布、运营分析)整合到统一界面,支持私有化部署,既能满足企业级的安全需求,也能降低个人开发者的AI应用开发门槛。
2025-12-27 10:08:31
2605
原创 大语言模型实战(七)——面向目标架构案例之FunctionCall代码实战
它接收一个或多个 Python 函数对象组成的列表,先读取每个函数的名称和文档注释,再调用 glm-4 大模型,让模型根据函数注释生成符合 JSON Schema 规范的参数描述字典,最后将这些字典包装成 Chat 模型要求的functions参数格式;同时为了保证稳定性,代码还设置了最多 4 次的重试机制,若生成过程中报错会自动重试,直到成功或达到重试上限。安装PostgreSQL数据库镜像。自动识别调用工具并且实现调用。
2025-12-25 21:22:07
268
原创 大语言模型实战(六)——面向目标架构案例之FunctionCall技巧介绍
初始化大模型# 定义3个独立任务的消息列表SystemMessage(content="你是一位乐于助人的智能小助手"),HumanMessage(content="请帮我介绍一下什么是机器学习")SystemMessage(content="你是一位乐于助人的智能小助手"),HumanMessage(content="请帮我介绍一下什么是AIGC")SystemMessage(content="你是一位乐于助人的智能小助手"),
2025-12-23 11:55:19
705
原创 大语言模型实战(五)——大模型开发范式演进:从“调用API”到“多Agent复杂目标”
大模型的普及不仅带来了能力的升级,也重构了开发思路——从“写代码实现功能”到“用模型能力落地业务目标”。本文结合实际案例,拆解大模型开发范式的四层演进逻辑,帮你理清不同场景下的技术选择。
2025-12-22 17:43:56
1088
原创 大语言模型实战(四)——Transformer 网络架构源码剖析
实际使用中,Input Embedding的输出会与“位置编码(Positional Encoding)”的输出相加,得到最终的输入向量(既包含单词语义,又包含位置信息),再送入编码器。Encoder(编码器)是Transformer的“语义提取模块”,负责将输入文本(如待翻译的句子)编码为包含全局语义信息的特征向量,为后续的解码器提供输入。,核心作用是将离散的单词索引(如“苹果”对应索引100)转换为连续的、固定维度的稠密向量(词向量),为后续的注意力计算、特征提取提供可数值化的输入。
2025-12-22 16:33:15
894
原创 大语言模型实战(三)——词编码技术演进:从 “机器识字符” 到 “AI 懂语义”
大家好,今天我们聊聊自然语言处理(NLP)的“地基”——词编码技术。从让机器“区分单词”到“理解语义”,这背后是四代技术的迭代,正好对应四张经典示意图。
2025-12-22 15:29:34
498
原创 大语言模型实战(二)——Transformer网络架构解读
(源自经典论文《Attention Is All You Need》),同时补充了自注意力机制的计算逻辑,完整展示了Transformer的结构组成与核心模块的工作原理,是大语言模型(如GPT、BERT)的基础架构。,防止 softmax 输出过于极端,保证模型训练的稳定性和注意力机制的有效性。Transformer由**左侧的Encoder(编码器)Decoder同样由。
2025-12-22 14:48:09
829
原创 基于通义千问 + Weaviate 向量库的 ResumeMind - 智能简历筛选诊断平台
在当今竞争激烈的就业市场中,无论是企业招聘还是个人求职,简历都扮演着至关重要的角色。然而,传统的简历处理方式往往效率低下,主观性强,往往难以满足快速变化的人才需求。应运而生,它是一款集于一体的全栈应用。该平台巧妙利用大语言模型(通义千问)和向量搜索技术,为HR和候选人打造了一个高效处理简历的解决方案,重新定义了简历处理的方式。
2025-12-07 11:10:53
891
原创 企业级OLAP业务落地:Agent架构范式与技术选型全解析
Agent架构是一种“具备自主决策与多步执行能力的智能体框架”,其核心目标是让大模型从“被动生成”升级为“主动解决问题”。与传统“面向Chain/过程开发”的模式不同(依赖固定数学模型、判别模型等预设逻辑),Agent架构以“任务为中心”,通过动态拆解步骤、调用工具、记忆历史信息,适配复杂多变的企业OLAP场景(如实时数据分析、多维度报表生成、跨部门数据协作)。适用场景:企业OLAP业务需求极为特殊(如自研OLAP引擎、特殊数据安全要求),需要完全脱离现有工具框架,构建专属Agent系统。目标人群。
2025-12-05 17:39:51
772
原创 langGraph从入门到精通(一)——langgraph概念解析
LangGraph是一种基于图计算的有状态Agent框架,旨在提供强大的编程模型,用于构建智能、自适应和可扩展的计算系统,以应对复杂计算挑战(如多轮对话、长期任务执行、多智能体协作)。功能:智能体对复杂信息(如长文档、多轮对话历史)进行汇总,提取关键要点,形成简明摘要;价值:帮助智能体快速理解复杂情境,减少后续节点的信息处理量(如将“1000字的会议记录”总结为“100字核心要点”)。子图是LangGraph中用于表示局部计算逻辑的基本单元,通过定义子图,可将复杂的图结构拆分为多个简单、可管理的模块。
2025-12-05 16:45:45
1132
git常用的操作手册和指南
2024-08-27
基于智谱AI和LangChain实现RAG应用代码
2024-08-27
基于LangChain和智谱API搭建知识库
2024-08-26
百度的关键字爬取相关图片
2024-08-26
实现一个简单的视频对象追踪应用,该应用支持多种追踪算法,并允许用户实时选择和追踪视频中的对象 这种技术在许多领域都有广泛的应用
2024-04-18
从指定路径读取图像文件、利用OpenCV进行图像处理,以及使用Caffe框架进行深度学习预测的过程
2024-04-18
Python库d和OpenCV来实现眼部闭合检测,主要用于评估用户是否眨眼
2024-04-18
基于Opencv实现答题卡识别系统中的各个功能
2024-04-18
停车位识别基于深度学习的停车位识别系统利用计算机视觉技术来自动检测和监控停车位的占用情况 地平线
2024-04-17
全景图像拼接;实现特征点检测与描述子
2024-04-17
基于Opencv与tesseract 实现的文本识别
2024-04-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅