【Tensor Computation for Data Analysis】T-SVD(Tensor Singular Value Decomposition)

在这里插入图片描述

什么是 T-SVD?

T-SVD(Tensor Singular Value Decomposition)是针对三维张量的一种奇异值分解方法,类似于我们熟悉的矩阵的 SVD(奇异值分解)。T-SVD 是基于 t-product 的分解,可以将张量分解为三个部分:正交张量、对角张量和另一个正交张量。它在信号处理、图像修复、视频分析等多维数据处理中非常有用。


1. 准备:张量和 T-SVD 的分解目标

A∈Rn1×n2×n3\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}ARn1×n2×n3 是一个三维张量。T-SVD 的目标是将张量分解为:

A=U∗S∗V⊤, \mathcal{A} = \mathcal{U} * \mathcal{S} * \mathcal{V}^\top, A=USV,

其中:

  • U∈Rn1×n1×n3\mathcal{U} \in \mathbb{R}^{n_1 \times n_1 \times n_3}URn1×n1×n3 :一个正交张量;
  • V∈Rn2×n2×n3\mathcal{V} \in \mathbb{R}^{n_2 \times n_2 \times n_3}VRn2×n2×n3 :另一个正交张量;
  • S∈Rn1×n2×n3\mathcal{S} \in \mathbb{R}^{n_1 \times n_2 \times n_3}SRn1×n2×n3 :一个对角张量(所有切片中仅主对角线元素非零)。

这里的乘法是基于 t-product 的。


2. T-SVD 的计算步骤

(1) 对张量进行傅里叶变换

和 t-product 一样,T-SVD 的核心思想是先将张量转换到频域,在频域中对每个切片做普通矩阵分解,然后再转换回原域。

  • 先对 A\mathcal{A}A 的第三维做快速傅里叶变换(FFT):

    A^=fft(A,dim=3), \hat{\mathcal{A}} = \text{fft}(\mathcal{A}, \text{dim}=3), A^=fft(A,dim=3),

    结果 A^\hat{\mathcal{A}}A^ 是一个在频域中的张量。

(2) 对每个切片执行矩阵 SVD

在频域中, A^\hat{\mathcal{A}}A^ 的每个切片 A^k\hat{\mathbf{A}}_kA^k 是一个普通的矩阵。对每个切片执行矩阵的 SVD:

A^k=U^k⋅S^k⋅V^k⊤,k=1,2,…,n3, \hat{\mathbf{A}}_k = \hat{\mathbf{U}}_k \cdot \hat{\mathbf{S}}_k \cdot \hat{\mathbf{V}}_k^\top, \quad k = 1, 2, \dots, n_3, A^k=U^kS^kV^k,k=1,2,,n3,

其中:

  • U^k∈Rn1×n1\hat{\mathbf{U}}_k \in \mathbb{R}^{n_1 \times n_1}U^k
### T-SVD 张量奇异值分解算法实现与应用 #### 定义与背景 T-SVD张量奇异值分解)是一种专门用于三维张量的分解技术,其原理类似于矩阵的SVD。通过这种分解方式,可以将一个三维张量表达为两个正交张量和一个对角张量的乘积[^1]。 #### 算法流程 对于给定的一个三阶张量 \(\mathcal{A} \in \mathbb{R}^{n_1\times n_2\times n_3}\),T-SVD 将其实现过程分为以下几个方面: - **初始化**:准备待处理的数据集并构建对应的张量结构。 - **核心操作**:利用 t-product 进行运算,即定义一种新的卷积形式下的“乘法”,使得能够有效地执行后续步骤中的变换操作。 - **迭代优化**:不断求解低秩逼近问题,在每一步都尽可能好地捕捉原始数据的主要成分;此过程中涉及到计算特定类型的特殊张量 \(M\) 并对其进行相应的调整以获得更好的近似效果[^2]。 ```python import numpy as np from scipy.linalg import svd def tensor_svd(tensor, rank=None): """ Perform Tensor Singular Value Decomposition on a given 3D tensor. Parameters: tensor : ndarray of shape (I, J, K) Input tensor to be decomposed. rank : int or None Rank truncation parameter; if not specified all singular values are kept. Returns: U : ndarray of shape (I, I) Left orthogonal matrix from the decomposition. S : ndarray of shape (min(I,J), ) Diagonal elements representing singular values. Vh : ndarray of shape (J, J) Right orthogonal matrix transposed from the decomposition. """ # Unfold the third mode and perform standard matrix SVD unfolded_tensor = np.reshape(tensor.transpose((0, 2, 1)), (-1, tensor.shape[1])) u, s, vh = svd(unfolded_tensor) if rank is not None: u = u[:, :rank] s = s[:rank] vh = vh[:rank] return u, s, vh.T.conj() ``` 上述代码展示了如何基于 Python 和 NumPy 库来简单模拟 T-SVD 的一部分功能。请注意这只是一个简化版本,并未完全按照严格的数学定义实施所有的细节。 #### 应用领域 T-SVD 在多个实际应用场景中有重要价值,特别是在涉及高维数据分析的任务中表现出色。具体来说,包括但不限于以下几类场景: - **信号处理**:可用于滤波、降噪以及频谱估计等方面; - **图像修复**:有助于去除噪声干扰恢复清晰度更高的图片质量; - **视频分析**:支持动作识别、异常检测等功能开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FOUR_A

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值