生信论文解读-Accurate prediction of molecular properties and drug targets using a self-supervised image...

药物的临床效率以及安全性由它的分子性质和靶点来决定

ImageMol framework --- pretrain chemical representations.从没有标记的分子图像里预训练化学表示

分子表示学习:

一维:simplified molecular-input line-entry system (SMILES)、International Chemical Identifier (InChI)

二维:two-dimensional (2D) graphs

三维:Image

如题目所表达的,ImageMol实现了两件事:

1. accurate prediction of molecular properties. 预测分子特性(药物的代谢、脑滲透、毒性)

2. accurate prediction of drug targets. 预测分子靶标(分泌酶、激酶)

并提出两个重要improvements:

1. 它利用分子图像作为特征表示的组合,提高准确率以及降低计算成本

2.探索了一个无监督预训练学习框架来捕获分子图像的结构信息---从人类蛋白质组一千万有多样生物活性的drug-like化合物中

做这件事的motivation是:

The increasing cost of drug development resulted from lack of efficacy of the randomized controlled trials, and the unknown pharmacokinetics and safety profiles of candidate compounds. 缺乏有效的随机对照试验,以及对药代学与安全性未知-- 导致--药物开发成本增加

缺乏药物相关知识背景,这里找gpt解释一下什么是药代动力学(Pharmacokinetics,PK):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值