药物的临床效率以及安全性由它的分子性质和靶点来决定
ImageMol framework --- pretrain chemical representations.从没有标记的分子图像里预训练化学表示
分子表示学习:
一维:simplified molecular-input line-entry system (SMILES)、International Chemical Identifier (InChI)
二维:two-dimensional (2D) graphs
三维:Image
如题目所表达的,ImageMol实现了两件事:
1. accurate prediction of molecular properties. 预测分子特性(药物的代谢、脑滲透、毒性)
2. accurate prediction of drug targets. 预测分子靶标(分泌酶、激酶)
并提出两个重要improvements:
1. 它利用分子图像作为特征表示的组合,提高准确率以及降低计算成本
2.探索了一个无监督预训练学习框架来捕获分子图像的结构信息---从人类蛋白质组一千万有多样生物活性的drug-like化合物中
做这件事的motivation是:
The increasing cost of drug development resulted from lack of efficacy of the randomized controlled trials, and the unknown pharmacokinetics and safety profiles of candidate compounds. 缺乏有效的随机对照试验,以及对药代学与安全性未知-- 导致--药物开发成本增加
缺乏药物相关知识背景,这里找gpt解释一下什么是药代动力学(Pharmacokinetics,PK):