Halcon OCR识别

本文详细介绍了Halcon OCR(光学字符识别)的工作流程,包括图像预处理、ROI区域分割、字符识别和结果处理。重点讲解了模式识别技术,特别是使用多层神经网络(MLP)进行字符分类器的训练、保存和使用。通过示例代码展示了如何创建、训练和应用OCR分类器,以及如何进行字符识别。此外,还提到了OCR模型的其他选择,如SVM、KNN和CNN。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Halcon OCR识别


OCR(Optical Character Recognition),光学字符识别的英文缩写。

OCR主要步骤

  • 图像预处理
  • 目标区域分割(ROI)
  • 字符识别
  • 结果处理

1. 图像预处理

​ 对原始图像进行灰度化,二值化,模板匹配,降噪,增强等!

2.目标区域分割(ROI)

​ 对预处理后的图像进行ROI提取,分割出单个字符组成的区域

3.字符识别,即模式识别技术

  • 训练OCR,利用大量的模板图片训练出一个字符分类器
  • 使用OCR,将训练好的分类器用于字符分类,类似于手写数字识别!

4.结果处理

​ 将识别完的文字按特定的次序和规则组合输出!


上述4个步骤中,OCR的核心部分自然是第3步,即模式识别技术

模式识别技术

训练分类器

第一步:将分割好的字符区域加入训练集,使用函数

append_ocr_trainf(Character,Image::Class,TrainingFile:)

参数解析:
Character:字符区域
Image:灰度图像
Class:分类标签
TrainingFile:训练集文件名,一般后缀为.trf
功能说明:用于制作训练集,使用与TrainingFile文件相同的训练文件格式,将字符附加到现有文件。如果该文件不存在,则生成新文件。TrainingFile如果未指定扩展名,则默认添加扩展名.trf

第二步:创建分类器,使用函数

create_ocr_class_mlp(::WidthCharacter, HeightCharacter,Int
HALCON是一种计算机视觉库,提供了OCR(Optical Character Recognition,光学字符识别)功能。在HALCON中,OCR识别的基本流程包括采集图像、提取字符区域、读取字库句柄、进行识别、清除句柄等步骤。\[1\]HALCON提供了一组预先训练好的字体,可以用于识别各种领域的文本,包括文档、制药、工业产品甚至手写数字文本。此外,HALCON还包括了针对特定字体的预训练字体,以及基于卷积神经网络的通用字体。\[2\]在HALCON中,可以使用do_ocr_multi_class_mlp函数来读取多个字符,或者使用do_ocr_single_class_mlp函数来读取单个字符。同时,还可以使用do_ocr_word_mlp函数来进行单词的OCR识别。\[3\] #### 引用[.reference_title] - *1* [Halcon学习之OCR字符识别](https://blog.csdn.net/Mr_Four97/article/details/131161813)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Halcon解决方案指南(18)OCR--字符识别](https://blog.csdn.net/IntegralforLove/article/details/83756956)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值