概要
为了提高机械臂采摘苹果的效率,需要对可采摘苹果进行精准识别。通过对苹果、树叶、树枝以及它们之间的空间关系进行细致分析,我们将苹果识别问题细分为八个类别,由此引发了类别间数量严重不均衡的问题,形成了所谓的“长尾”效应,导致识别精度显著下降。针对这一现象,我们突破了传统有监督训练的框架,提出了使用自监督学习来增强模型主干部分的泛化能力,以缓解“长尾”数据对检测精度的影响。这种方法有助于提升模型的泛化性能,从而在各类别苹果之间实现更均衡的识别精度。
自监督学习
自监督学习是一种机器学习技术,它利用无标签的数据进行训练,从而学习到有用的特征和模式,而不需要外部的或有标签的数据集来验证或测试模型。这种方法在许多领域都有应用,包括自然语言处理、计算机视觉和强化学习等。自监督学习通过在训练过程中对输入数据自动编码信息,从而在无标签数据上进行学习,并最终生成有意义的表示,有助于提高模型的泛化能力和性能。
知识蒸馏
知识蒸馏是深度学习中一种常用的技术,它主要用于将一个已经训练好的教师模型(通常是较复杂的模型)的知识传递给一个较简单的模型(通常是学习新任务的新模型