FDTD product reference manual-Simulation objects(二)

Dipole source - Simulation object

FDTD MODE

dipole_source.pngOscillating dipoles act as sources in Maxwell's equation to produce electromagnetic fields. Dipoles are used to simulate point source radiators, such as radiation from a fluorescent molecule.

In MODE, for the 2.5D FDTD solver, the orientation of the dipole source partially depends on whether the polarization of the propagator simulation is set to TE or TM.  Depending on the simulation polarization and dipole type, the theta, phi values may be locked.

dipole_source_example.PNG

General tab

  • DIPOLE TYPE: A pull-down menu in which the point source can be configured as an electric dipole (oscillating point charge) or a magnetic dipole (current loop). The radiation pattern of these dipoles is similar, but not exactly the same.
  • AMPLITUDE: The amplitude of the point source. The units of the source depend on the dipole type, as explained in the Units and normalization section.
  • BASE AMPLITUDE: This is the amplitude that will generate a radiated CW power of 10 nW/m in 2D simulations and 1 fW in 3D simulations.
  • TOTAL AMPLITUDE: This is the amplitude actually used in the simulations, it is the product of the AMPLITUDE and the BASE AMPLITUDE.
  • PHASE: The phase of the point source, measured in units of degrees. Only useful for setting relative phase delays between multiple radiation sources.
  • THETA: The angle with respect to the z-axis of the dipole vector.
  • PHI: Angle with respect to the positive x-axis of the dipole vector.

Geometry tab

The geometry tab contains options to change the size and location of the sources. The dipole position and direction are specified in terms of the center position and their orientation through angles theta, phi.

Frequency/Wavelength tab

The Frequency/Wavelength tab is shown below. This tab can be accessed through the individual source properties, or the global source properties. Note that the plots on the right-hand side of the window update as the parameters are updated, so that you can easily observe the wavelength (top figure), frequency (middle figure) and temporal (bottom figure) content of the source settings.

ref_FDTD_sim_obj_freqwl_tab.png

At the top-left of the tab, it is possible to chose to either SET FREQUENCY / WAVELENGTH or SET TIME-DOMAIN. In most simulations, the 'SET FREQUENCY / WAVELENGTH ' option is recommended.

If you choose to directly modify the time domain settings, please keep the following points in mind:

  • PULSE DURATION: Choose a pulse duration that can accurately span your frequency or wavelength range of interest. However, very short pulses contain many frequency components and therefore disperse quickly. As a result, short pulses require more points per wavelength for accurate simulation.
  • PULSE OFFSET: This parameter defines the temporal separation between the start of the simulation and the center of the input pulse. To ensure that the input pulse is not truncated, the pulse offset should be at least 2 times the pulse duration. This will ensure that the frequency distribution around the center frequency of the source is close to symmetrical, and the initial fields are close to zero at the beginning of the simulation.
  • SOURCE TYPE: In general, you can choose between ‘standard’ and ‘broadband’ source types. Standard sources consist of a Gaussian pulse at a fixed optical carrier, while the broadband sources consist of a Gaussian pulse with an optical carrier which varies across the pulse envelope. Broadband sources can be used to perform simulations in which wideband frequency data is required – for instance, from 200 to 1000 THz. This type of frequency range cannot be accurately simulated using the standard source type.

Set frequency wavelength

If the SET FREQUENCY / WAVELENGTH option was chosen, this section makes it possible to either set the frequency or the wavelength and choose to either set the center and span or the minimum and maximum frequencies of the source.

For single frequency simulations, simply set both the min and max wavelengths to the same value.

Set time domain

The options in the time domain section are:

  • SOURCE TYPE: This setting is used to specify whether the source is a standard source or a broadband source. The standard source consists of an optical carrier with a fixed frequency and a Gaussian envelope. The broadband source, which contains a much wider spectrum, consists of a chirped optical carrier with a Gaussian envelope. When the user uses the script function setsourcesignal, this field will be set as "user input".
  • FREQUENCY: The center frequency of the optical carrier.
  • PULSELENGTH: The full-width at half-maximum (FWHM) power temporal duration of the pulse.
  • OFFSET: The time at which the source reaches its peak amplitude, measured relative to the start of the simulation. An offset of N seconds corresponds to a source which reaches its peak amplitude N seconds after the start of the simulation.
  • BANDWIDTH: The FWHM frequency width of the time-domain pulse.

For more information, please visit Changing the source bandwidth

Advanced

  • ELIMINATE DISCONTINUITY: Ensures the function has a continuous derivative (smooth transitions from/to zero) at the start and end of a user-defined source time signal. Enabled by default.
  • OPTIMIZE FOR SHORT PULSE: Use the shortest possible source pulse.
    • This option is enabled by default in the FDTD solver. It should only be disabled when it is necessary to minimize the power injected by the source that is outside of the source range (eg. convergence problems related to broadband steep angled injection).
    • This option is disabled by default in the varFDTD solver, as it improves the algorithm's numerical stability.
  • ELIMINATE DC: Eliminates the DC component by forcing signal symmetry

eliminate_dc.PNG

Manual calculation of the source time signal

As explained above, the 'Standard' source type uses a fixed carrier with a Gaussian envelope. The following script code shows how to calculate the source time signal used by the source.

# calculate standard pulse time signal
frequency  = 300e12;
pulselength = 50e-15;
offset   = 150e-15;

t      = linspace(0,600e-15, 10000);
w_center  = frequency*2*pi; 
delta_t   = pulselength/(2*sqrt(log(2)));
pulse = sin( -w_center*(t-offset)) * exp( -(t-offset)^2/2/delta_t^2 );

plot(t*1e12,pulse,"t (fs)","source pulse time signal");

Note:

There are some small differences between the pulse generated by this code and the actual time signal generated by the 'standard' source pulse setting. If you need very precise control over or knowledge of the source time signal, you should create your own Custom time signal.

The 'broadband' option is generated with a more complex function. The precise function is not provided. To create your own arbitrary source time signals, see the Custom time signal page.

Advanced tab

This tab only appears for the dipole source. The tab contains a RECORD LOCAL FIELD checkbox. When checked, the fields around the dipole are saved; this box must be checked in order to use the dipolepower script function.

Results returned

  • DIPOLEPOWER: The power injected into the simulation region by a dipole is returned. The units will be in Watts if cw norm is used and Watts/Hertz2 if no norm is used.
  • PURCELL: By utilizing the power measurement, the emission rate enhancement of a spontaneous emitter inside a cavity or resonator, the Purcell factor is returned.
  • TIME SIGNAL: Time domain signal of the source pulse.  
  • SPECTRUM: The fourier transform of time signal.

Testing FDTD dipole sources in homogeneous materials

FDTD MODE

usr_dipole_power_3D_Electric.jpg

This section describes the power radiated by a dipole in a homogeneous material.

Theoretical power radiated by a dipole in a homogeneous material

The analytic expressions of total radiated power of electric and magnetic dipoles in a homogeneous material of refractive index n, in 2D and 3D are shown in the following table.

Dipole type Total radiate power (Watts) Units

2D TM Electric Dipole

P=π2μ04π|→p0|2ω3

[p0] = Cm/m

2D TE Electric Dipole

P=π4μ04π|→p0|2ω3

[p0] = Cm/m

3D Electric Dipole

P=μ04πn|→p0|2ω43c

[p0] = Cm

2D TM Magnetic Dipole

P=π4μ04πn2|→m0|2ω3c2

[m0] = Am2/m

2D TE Magnetic Dipole

P=π2μ04πn2|→m0|2ω3c2

[m0] = Am2/m

3D Magnetic Dipole

P=μ04πn3|→n0|2ω43c3

[m0] = Am2

Verifying the emitted power in FDTD.

The script file usr_dipole_power.lsf will compare the above analytic formulas for power radiated by a dipole with the measured results from an FDTD simulation. To run this example, download all three assocated files. Open one of the simulation files (.fsp), then run the script.

The script will run a total of 6 simulations, one for each of the dipole type listed above. In each case, it will compare the total measured power in FDTD/Propagator with the analytic expressions. It does this over a wavelength range of 1 to 2 um. It plots both the measured power and the analytical result for each case. The sourcepower function evaluates the analytic expression described above. The dipolepower function measures the actual power radiated by the dipole.

The 3D electric and magnetic dipole comparisons are shown in Figure 1. The percentage difference between the measured result and the analytical expression as a function of points per wavelength in the homogeneous material are shown in Figure 2.

usr_dipole_power_3D_Electric.jpg     usr_dipole_power_3D_Magnetic.jpg

Analytic and measured power for electric and magnetic dipoles.

usr_dipole_power_2D_error.jpg    usr_dipole_power_3D_error.jpg

Difference between the analytical power for a dipole and the simulated power in 2D and 3D
(TE/TM and electric/magnetic dipoles). 

It is important to understand the following points:

  • The main source of the discrepancy is that FDTD is solved on a discrete mesh. The analytic expression comes from a calculation that assumes a continuous homogeneous material instead of a discrete mesh. Therefore it is expected that there is a difference between the simulation and theory which should only go to zero when the mesh size becomes very small.
  • In principle, dipole sources are injected by exciting the electric and magnetic fields at only one point on the mesh. In order to allow injection at arbitrary spatial positions and dipole orientations, several mesh points are actually excited with appropriate weighting's. This means that the total injected power changes when you move the dipole by amounts smaller than the mesh size, dx. At 10 points per wavelength, this change in power can be as large as 5% by moving the dipole by dx/2. In Figure 2, the 2D TE electric dipole has the best agreement with the analytic expression compared to the other 2D dipoles, but moving the dipole location by a small amount can make a different dipole type have the best agreement. 

We should note that we can compare to the analytic expression for the power radiated from dipoles to within approximately 5% accuracy at 10 points per wavelength. This corresponds to a Mesh Accuracy setting of approximately 2. At 20 points per wavelength (Mesh Accuracy approximately 4-5) the injected power is better than 2%. 

The CW normalization option attempts to normalize monitor data to the amount of energy injected into the simulation at each frequency. This allows the user to extract the CW response of a system for a range of frequencies from a single simulation. For this normalization to occur, the injected power must be known. In the case of a dipole, the injected power is calculated from the analytic formula for "total power radiated by a dipole in a homogeneous material". 

This means that the simulation data is actually normalized to the amount of power a dipole would inject in a homogenous material, rather than how much power was actually injected into the specific simulation. A dipoles actual injected power can vary significantly from the homogeneous value, depending on what physical structures are near by. Field reflected from nearby structures re-interfere with the source, causing it to inject more or less power than expected. The next section discusses this issue in more detail.

Understanding dipoles in non-homogeneous materials

FDTD MODE

usr_dipole_power_3D_metal_images.jpg

The actual power emitted by a dipole is highly dependant on the surrounding materials, and can vary significantly from the analytic formula for a dipole in a homogeneous material. This section looks at a specific example of a dipole near a metal wall. In these cases, the CW normalization option will not work correctly because it will normalize data to the analytic formula, rather than the actual power emitted. For accurate power normalization, we must normalize results using the dipolepower function (actual radiated power) rather than the standard sourcepower function (analytic power radiated in homogeneous material).

Normalizing a dipole near a metal wall

In LEDs and OLEDs, the dipoles typically radiate near a metal wall. It is worthwhile to consider power normalization calculations near metal walls.

Open the file usr_dipole_power_metal1.fsp. This structure we are modeling is shown in the following screenshot.

usr_dipole_power_3D_metal_screenshot.jpg

All boundaries are PML, except for the lower z boundary, which is set to metal. There is a single dipole source in the simulation volume. Run the simulation, then paste the following script commands into the script prompt to create the following figures.

f1=c/1.5e-6;
f2=c/1.0e-6;
f=linspace(f1,f2,100);

power1=sourcepower(f,2,"real_source"); 
power2=dipolepower(f, "real_source"); # actual power radiated by the dipole

plot(c/f*1e6,power1,power2,"wavelength (um)","power");
legend("Analytic power radiated in homogeneous material",
       "Actual power radiated by dipole near metal wall");
plot(c/f*1e6,power2/power1,"wavelength (um)","normalized power");

When the simulation is done, run the script the above commands. They will calculate the total power radiated by the dipole, normalized to the analytic expression for the power radiated by this dipole in a homogeneous material. You'll see the following result shown in the following figure.

usr_dipole_power_3D_metal_power1.jpg  usr_dipole_power_3D_metal_power2.jpg

You can see that the radiated power is significantly different than the same dipole in free space. To understand these results, we can consider the equivalent problem to the metal wall. Let’s look at the problem using the method of image charges. The metal wall can be replaced by a dipole with the appropriate orientation at an equal distance behind where the original metal wall was, as shown below:

usr_dipole_power_3D_metal_images.jpg

To simulate this system, load the file usr_dipole_power_metal2.fsp. It is set up with an image charge in place of the metal wall. The lower z boundary has been extended and set to use PML. The dipole source is appropriately positioned. After running the simulation, paste the same script code into the script prompt again. Notice that the figures are exactly the same as the first simulation. In the following figure, the two curves lie on top of one another.

usr_dipole_power_3D_metal_power3.jpg

Note: Dipole radiated power

It may seem strange that the total power radiated by the dipole changes when it is near a metal wall, despite the fact that the dipole amplitude is fixed. To understand how this can be, we should realize that a dipole is effectively a small antenna with a fixed current, I

. The total radiated power is given by P=I2Rrad, where Rrad

is the radiation resistance of the antenna. By placing the antenna in a different location, we can change the radiation resistance and therefore the total radiated power. Energy is conserved however because the power needed to drive the antenna is different in each case. From the quantum mechanical point of view, which is useful for LEDs, we see that the local density of states is different in free space than it is near a metal wall. This will affect the rate of decay of electron-hole pairs into photons, and can ultimately be used to improve the quantum efficiency.

Note: Beam sources

As described above, the amount of power radiated by a source can change due to interference with another source, or when it interferes with itself. This is usually only relevant for dipole sources, but it can occur with all types of sources. It is not very important for beam sources because these simulations are usually set up so this interference does not occur.

Related publications

Barnes, W. L. (1998). Fluorescence near interfaces: The role of photonic mode density. Journal of Modern Optics, 45,661-669. DOI: 10.1080/09500349808230614

 

Plane wave and beam source - Simulation object

FDTD MODE

planewave_overview.pngPlane wave sources are used to inject laterally-uniform electromagnetic energy from one side of the source region. In two-dimensional simulations, the plane wave source injects along a line, while in three-dimensional simulations the plane wave source injects along a plane. It is also possible to inject a plane wave at an angle. The plane wave source is actually the same object as the Gaussian source, with the only difference being the SOURCE SHAPE setting. Periodic or Bloch boundary conditions should be used with Bloch/periodic type plane wave source. Diffracting plane wave source can be used with PML in all directions. When a broadband result at angled plane wave incidence is pursued with one simulation without using Bloch BCs, the BFAST source technique should be used, please read more on  BFAST plane wave.

A Gaussian source defines a beam of electromagnetic radiation propagating in a specific direction, with the amplitude defined by a Gaussian cross-section of a given width. By default, the Gaussian sources use a scalar beam approximation for the electric field which is valid as long as the waist beam diameter is much larger than the diffraction limit. The scalar approximation assumes that the fields in the direction of propagation are zero. For a highly focused beam, there is also a thin lens source that will inject a fully vectorial beam. The cross-section of this beam will be a Gaussian if the lens is not filled, and will be a since function if the lens is filled. In each case, the beams are injected along a line perpendicular to the propagation direction and are clipped at the edges of the source.

NOTE: The following changes have been made to the polarization arrows in 2020 R.1.4 to avoid ambiguity with the polarization orientation. 

  • Use a single-headed arrow corresponding to the initial polarization of the electric field
  • Add a green arrow for the polarization of the magnetic field

polarization_arrow_new.PNG

These changes affect only the way the source objects look in the GUI. The simulation results won't be affected in any way.

General tab

  • SOURCE SHAPE: The shape of the beam. It can be changed to a Gaussian, plane wave or Cauchy/Lorentzian.
  • AMPLITUDE: The amplitude of the source as explained on the Units and normalization page.
  • PHASE: The phase of the point source, measured in units of degrees. Only useful for setting relative phase delays between multiple radiation sources.
  • PLANE WAVE TYPE: Sets the type of the plane wave source. More information about each source type is available in dedicated topic available from "See also" section above. This menu is available for plane wave source only.
  • INJECTION AXIS: Sets the axis along which the radiation propagates.
  • DIRECTION: This field specifies the direction in which the radiation propagates. FORWARD corresponds to propagation in the positive direction, while BACKWARD corresponds to propagation in the negative direction.
  • ANGLE THETA: In 3D simulations, this is the angle of propagation, in degrees, with respect to the injection axis of the source. In 2D simulations, it is the angle of propagation, in degrees, rotated about the global Z-axis in a right-hand context, i.e. the angle of propagation in the XY plane.
  • ANGLE PHI: In 3D simulations, this is the angle of propagation, in degrees, rotated about the injection axis of the source in a right-hand context. In 2D simulations, this value is not used.
  • POLARIZATION ANGLE: The polarization angle defines the orientation of the injected electric field, and is measured with respect to the plane formed by the direction of propagation and the normal to the injection plane. A polarization angle of zero degrees defines P-polarized radiation, regardless of the direction of propagation while a polarization angle of 90 degrees defines S-polarized radiation.

Geometry tab

The geometry tab contains options to change the size and location of the sources.

Frequency/Wavelength tab

The Frequency/Wavelength tab is shown below. This tab can be accessed through the individual source properties or the global source properties. Note that the plots on the right-hand side of the window update as the parameters are updated, so that you can easily observe the wavelength (top figure), frequency (middle figure), and temporal (bottom figure) content of the source settings.

ref_FDTD_sim_obj_freqwl_tab.png

At the top-left of the tab, it is possible to chose to either SET FREQUENCY / WAVELENGTH or SET TIME-DOMAIN. In most simulations, the 'SET FREQUENCY / WAVELENGTH ' option is recommended.

If you choose to directly modify the time domain settings, please keep the following points in mind:

  • PULSE DURATIONS: Choose a pulse duration that can accurately span your frequency or wavelength range of interest. However, very short pulses contain many frequency components and therefore disperse quickly. As a result, short pulses require more points per wavelength for accurate simulation.
  • PULSE OFFSET: This parameter defines the temporal separation between the start of the simulation and the center of the input pulse. To ensure that the input pulse is not truncated, the pulse offset should be at least 2 times the pulse duration. This will ensure that the frequency distribution around the center frequency of the source is close to symmetrical, and the initial fields are close to zero at the beginning of the simulation.
  • SOURCE TYPE: In general, you can choose between ‘standard’ and ‘broadband’ source types. Standard sources consist of a Gaussian pulse at a fixed optical carrier, while the broadband sources consist of a Gaussian pulse with an optical carrier which varies across the pulse envelope. Broadband sources can be used to perform simulations in which wideband frequency data is required – for instance, from 200 to 1000 THz. This type of frequency range cannot be accurately simulated using the standard source type.

Set frequency wavelength

If the SET FREQUENCY / WAVELENGTH option was chosen, this section makes it possible to either set the frequency or the wavelength and choose to either set the center and span or the minimum and maximum frequencies of the source.

For single frequency simulations, simply set both the min and max wavelengths to the same value.

Set time domain

The options in the time domain section are:

  • SOURCE TYPE: This setting is used to specify whether the source is a standard source or a broadband source. The standard source consists of an optical carrier with a fixed frequency and a Gaussian envelope. The broadband source, which contains a much wider spectrum, consists of a chirped optical carrier with a Gaussian envelope. When the user uses the script function setsourcesignal, this field will be set as "user input".
  • FREQUENCY: The center frequency of the optical carrier.
  • PULSELENGTH: The full-width at half-maximum (FWHM) power temporal duration of the pulse.
  • OFFSET: The time at which the source reaches its peak amplitude, measured relative to the start of the simulation. An offset of N seconds corresponds to a source which reaches its peak amplitude N seconds after the start of the simulation.
  • BANDWIDTH: The FWHM frequency width of the time-domain pulse.

For more information, please visit  Changing the source bandwidth 

Advanced

  • ELIMINATE DISCONTINUITY: Ensures the function has a continuous derivative (smooth transitions from/to zero) at the start and end of a user-defined source time signal. Enabled by default.
  • OPTIMIZE FOR SHORT PULSE: Use the shortest possible source pulse.
    • This option is enabled by default in the FDTD solver. It should only be disabled when it is necessary to minimize the power injected by the source that is outside of the source range (eg. convergence problems related to broadband steep angled injection).
    • This option is disabled by default in the varFDTD solver, as it improves the algorithms numerical stability.
  • ELIMINATE DC: Eliminates the DC component by forcing signal symmetry

eliminate_dc.PNG

Manual calculation of the source time signal

As explained above, the 'Standard' source type uses a fixed carrier with a gaussian envelope. The following script code shows how to calculate the source time signal used by the source.

# calculate standard pulse time signal
frequency  = 300e12;
pulselength = 50e-15;
offset   = 150e-15;

t      = linspace(0,600e-15, 10000);
w_center  = frequency*2*pi; 
delta_t   = pulselength/(2*sqrt(log(2)));
pulse = sin( -w_center*(t-offset)) * exp( -(t-offset)^2/2/delta_t^2 );

plot(t*1e12,pulse,"t (fs)","source pulse time signal");

Note:

There are some small differences between the pulse generated by this code and the actual time signal generated by the 'standard' source pulse setting. If you need very precise control over or knowledge of the source time signal, you should create your own Custom time signal.

The 'broadband' option is generated with a more complex function. The precise function is not provided. To create your own arbitrary source time signals, see the Custom time signal page.

Beam options tab

In the general tab, set the source shape option to the desired shape (Gaussian, plane wave or Cauchy/Lorentzian) before entering data in the beam options tab because the beam options that are available will change depending on the source shape.

Beam options for all source shapes

  • THETA VS WAVELENGTH PLOT: This plot shows the actual injection angle theta for each source wavelength as used in the simulation.

Multifrequency beam calculation

  • MULTIFREQUENCY BEAM CALCULATION checkbox enables/disables the calculation of the source profile at multiple frequency points. This feature is recommended for broadband simulations, and injection in a dispersive material, particularly if injection under an angle is involved. It is important to remember that if this option is not checked, the same spatial field profile at all frequencies is injected. See this dedicated topic for more information about this feature.
  • NUMBER OF FREQUENCY POINTS specifies how many frequency points are going to be used to compute the field profile.

Beam options for Gaussian and Cauchy/Lorentzian sources

USE SCALAR APPROXIMATION / USE THIN LENS: These checkboxes allow the user to choose whether to use the scalar approximation for the electric field or the thin lens calculation. Gaussian sources can be defined using either the scalar approximation or thin lens calculation, whereas Cauchy/Lorentzian sources can only be defined using the scalar approximation.

VISUALIZE BEAM DATA: This button opens up a visualizer window where you can plot the current calculated beam electric and magnetic field profile over the injection plane.

Scalar approximation (Gaussian and Cauchy/Lorentzian)

BEAM PARAMETERS: This menu is used to choose to define the scalar beam by the WAIST SIZE AND POSITION or the BEAM SIZE AND DIVERGENCE ANGLE.

If WAIST SIZE AND POSITION is chosen, the options are:

  • WAIST RADIUS: 1/e field (1/e2 power) radius of the beam for a Gaussian beam, or a half-width half-maximum (HWHM) for the Cauchy/Lorentzian beam.
  • DISTANCE FROM WAIST: The distance, d, as shown in the figure below. A positive distance corresponds to a diverging beam, and a negative sign corresponds to a converging beam.

If BEAM SIZE AND DIVERGENCE ANGLE is chosen, the options are:

  • BEAM RADIUS: 1/e field (1/e2 power) radius of the beam for a Gaussian beam, or a half-width half-maximum (HWHM) for the Cauchy/Lorentzian beam.
  • DIVERGENCE ANGLE: Angle of the radiation spread as measured in the far field, as shown in the figure below. A positive angle corresponds to a diverging beam and a negative angle corresponds to a converging beam.

Thin Lens (Gaussian only)

  • NA: This is n sin(a) where n is the refractive index of the medium in which the source is found and a is the half angle as shown in the figure below. Please note that the index will not be correctly defined in dispersive media and lenses should only be used in non-dispersive media. The refractive index for the source is determined at X, Y (and Z).
  • DISTANCE FROM FOCUS: The distance d from focus as shown in the figure below. A negative distance indicates a converging beam and a positive distance indicates a diverging beam.
  • FILL LENS: Checking this box indicates that the lens is illuminated with a plane wave which is clipped at the lens edge. If FILL LENS is unchecked, then it is possible to set the diameter of the thin lens (LENS DIAMETER) and the beam diameter prior to striking the lens (BEAM DIAMETER), as shown in the figure below. A beam diameter much larger than the lens diameter is equivalent to a filled lens.
  • USE CUSTOM PUPIL FUNCTION: Checking this box applies a pupil (aperture) function to the beam. This option disables the FILL LENS one. The pupil function is defined in  direction cosine space (i.e. normalized k-space) by a matrix dataset with parameters u1 and u2 on the plane perpendicular to the injection axis of the source. The matrix dataset must be called "pupil" and it must have either a single scalar attribute named "p" or two scalar attributes named "E1" and "E2"; the second case can be used to modify the polarization of the beam. The matrix dataset can be loaded from a matlab file using the LOAD PUPIL FUNCTION button or from the Lumerical script workspace using the command importdataset. For more information see  this example.
  • NUMBER OF PLANE WAVES: This is the number of plane waves used to construct the beam. The beam profile is more accurate as this number increases but the calculation takes longer. The default value in 2D is 1000.

TIP: selecting the beam option

When the beam waist radius is several times larger than the wavelength used, scalar approximation option should be selected. When the beam waist radius is roughly on the same order as the wavelength, the thin lens option should be used.

Note: References for the thin lens source

The field profiles generated by the thin lens source are described in the following references. For uniform illumination (filled lens), the field distribution is precisely the same as in the papers. For non-uniform illumination at very high NA (numerical aperture), there are some subtle differences. This is due to a slightly different interpretation of whether the incident beam is a Gaussian in real space or in k-space. This difference is rarely of any practical importance because other factors such as the non-ideal lens properties become important at these very high NA systems.

M. Mansuripur, "Distribution of light at and near the focus of high-numerical-aperture objectives," J. Opt. Soc. Am. A 3,2086-2093 (1986).
M. Mansuripur, "Certain computational aspects of vector diffraction problems," J. Opt. Soc. Am. A 6, 786-805 (1989).
M. Mansuripur, "Distribution of light at and near the focus of high-numerical-aperture objectives: erratum, Certain computational aspects of vector diffraction problems: erratum" J. Opt. Soc. Am. A 10, 382-383 (1993).

 The figure below shows the beam parameter definitions for the scalar approximation beam.

ref_FDTD_sim_obj_source_Gaussian_thin_lens_fig1.jpg

The figure below shows the beam parameter definitions for the thin lens, fully-vectorial beam.

ref_FDTD_sim_obj_source_Gaussian_thin_lens_fig2.jpg

TIP: Setting Gaussian source parameters

Gaussian spot size: The beam spot size can be set independently of the source span. The source span should be chosen to be larger than the beam spot size. If the spot size is larger than the simulation region, the beam profile will be truncated at the simulation boundary. If there is significant intensity at the edges of the source, as shown in this figure, the beam will scatter on injection. 

ref_FDTD_sim_obj_source_Gaussian_thin_lens_fig5.jpg

Results returned

  • FIELDS: The fields injected at the injection plane is returned as a function of position and frequency/wavelength.
  • INDEX: The index of the region the source covers is returned. This value does not refresh automatically, user needs to re-calculate the FIELDS.
  • TIME SIGNAL: Time domain signal of the source pulse.
  • SPECTRUM: The fourier transform of time signal.

Understanding field truncation issues with finite sized plane wave sources

FDTD MODE

usr_using_planewave_field2.jpg

This section describes problems that can occur when using the plane wave source is truncated, either because the span is too small, or when PML boundary conditions are used.

Examples of correct usage

Ideally the plane wave source should be used in the following manner: The source should span the entire simulation. Periodic or Bloch boundary conditions should be used in the directions normal to the propagation. PML should be used to to absorb the transmitted and reflected light.The first two examples illustrate this situation.

usr_using_planewave_setup1.jpgusr_using_planewave_field1.jpg

Description

Simulate a plane wave propagating through free space at normal incidence.

Simulation Settings

  • Periodic BC for Y boundaries. PML for X boundaries.
  • Plane wave source extends through simulation boundary.
  • No physical structures

Results

  • An ideal plane wave propagates forward from the source, and is absorbed by the PML on the right side of the simulation.
  • In front of the source, a uniform intensity of 1 is measured at all locations. This is expected for a plane wave.
  • Behind source injection plane, zero field is recorded because there is no scattered field.

Recommendations

  • This is an appropriate way to setup simulations using plane wave illumination and periodic structures.
  • For plane wave illumination of non-periodic structures, consider using the TFSF source.
usr_using_planewave_setup4.jpgusr_using_planewave_field4.jpg

Description

Simulate a plane wave incident on a periodic array of cylinders at normal incidence.

Simulation Settings

  • Periodic BC for Y boundaries. PML for X boundaries.
  • Plane wave extends through simulation boundary
  • A cylinder with index 1.4 will cause some scattering.

Results

  • In front of the source, a complex intensity pattern is formed due to interference from the sphere.
  • Behind source injection plane, there is some scattered field visible due to reflections from the sphere.

Recommendations

  • This is an appropriate way to setup simulations using plane wave illumination and periodic structures.
  • For plane wave illumination of non-periodic structures surrounded by a uniform material, consider using the TFSF source.

Truncation by PML boundaries

If PML boundary conditions are used in the direction normal to the wave-vector, some undesired diffraction will occur because of energy absorbed by the PML.

usr_using_planewave_setup2.jpgusr_using_planewave_field2.jpg

Description

Simulate a plane wave propagating through free space, but with PML on all boundaries.

Simulation Settings

  • PML BC on all boundaries.
  • Plane wave extends through simulation boundary.
  • No physical structures.

Results

  • This simulation does not produce an ideal propagating plane wave because the PML absorbs energy at the simulation boundary, causing diffraction.
  • Far from the simulation boundary, the field still approximates a plane wave.

Recommendations

  • This is not a recommended configuration, since the PML causes non-physical distortions of the plane wave.
  • Consider using a focused beam source if you want a finite sized beam.
  • Consider using a TFSF source if you want a plane wave on a non-periodic structure.

Truncation due to short source span

If the source does not span the entire simulation width, diffraction will occur at the source boundaries. Physically, this setup can be understood as an infinite plane wave passing through an aperture the size of the source. Diffraction occurs as the plane wave passes through the aperture.

usr_using_planewave_setup3.jpgusr_using_planewave_field3.jpg

Description

Simulating a finite sized plane wave propagating in free space with the planewave source.

Simulation Settings

  • PML BC on all boundaries.
  • Plane wave source does not extend through simulation boundary.
  • No physical structures.

Results

  • This simulation does not result in an ideal propagating plane wave because the source has a finite width. This causes diffraction at the edges of the source.
  • Far from the source boundary, the field still approximates a plane wave.
  • Care must be taken with this type of simulation, since any analysis may have to compensate for the diffraction near the source boundary.

Recommendations

  • This is not a recommended configuration. There are very few situations where this simulation setup is actually required.
  • Consider using a focused beam source if you want a finite sized beam.
  • Consider using a TFSF source if you want a plane wave on a non-periodic structure.

 

Understanding injection angles in broadband simulations

FDTD MODE

usr_plane_angled.png

This page describes how to set up a simulation with a plane wave source injected at an angle. Issues that arise when using angled injection sources, including PML reflections, wavelength dependence of the injection angle, and other errors are also discussed. Even though only the plane wave source is discussed here, the same issues arise with all the sources including the mode source.

Note that the wavelength dependence issue can be avoided by using BFAST or multifrequency beam calculation for beam source and diffracting plane wave source.

Simulation setup

Source

To set a non-zero injection angle for a plane wave source, edit the source object. In the GENERAL tab of the edit source window, set ANGLE THETA and/or ANGLE PHI (Angle Theta alone for 2D, both for 3D, if needed).

Angled injection source setup.png

ANGLE THETA sets the angle with respect to the injection axis. In this example, the injection axis is the z-axis and the XZ view is shown below.

usr_plane_angled_theta.png

This angle of injection is then rotated around the injection axis by ANGLE PHI in a right-hand context. The XY view in the image below shows phi in our example.

usr_plane_angled_phi.png

Boundary conditions

Bloch boundary conditions are required when using a plane wave source injected at an angle. Bloch boundary conditions are similar to periodic boundary conditions, but they take into account a phase change across each period. Information about setting up Bloch boundary conditions can be found on the Bloch boundary conditions page.

However, when BFAST source technique is used, the boundary conditions set by the users in the plane of oblique incidence will be overridden by BFAST's own built_in boundary conditions.  

PML reflections

When injecting at steep angles, light will strike the PML boundaries at grazing angles. PML boundaries are optimized to absorb light at normal incidence. At grazing angles of incidence, large PML reflections can decrease the accuracy of the simulation results. Increasing the number of PML layers will reduce reflections.

Steeper injection angles require more PML layers. In the multi-layer stack calculation example, the model setup script is used to set the minimum number of PML layers used based on the angle of injection of the source.

Broadband injection angles

When a non-zero injection angle is set for Bloch/periodic plane wave source type, the actual angle of injected in the simulation varies as a function of frequency in broadband simulations. To get the actual angle injected at any particular wavelength, you can use the getsourceangle function, or edit the source to see a plot of theta versus wavelength in the GENERAL tab.

angled injection theta vs wavelength.png

Background

Bloch/periodic plane wave source injects fields that have a constant in-plane wavevector at all frequencies. The following figure shows a source with a nominal injection angle of approximately 45 degrees (purple arrow). The in plane wave vector (dotted green line) is chosen such that the actual injection angle at the center frequency fsim of the simulation matches the nominal injection angle. Since the magnitude of the wavevector is proportional to frequency, the actual injection angle will change as a function of frequency. Higher frequencies will be injected at smaller angles, while lower frequencies will be injected at larger angles.

usr_broadband_injection_angle_k.jpg

The in-plane wavevector is calculated with the following formula.

kin_plane=ksimsin(θsim)

where

ksim=2πfsimc

and θsim

is the nominal injection angle, fsim is the center frequency of the source, n is the refractive index and c

is the speed of light.

Since the magnitude of the wavevector is a function of frequency, while the in-plane component is fixed, the injection angle must change as a function of frequency. The angular dependence can be calculated with the following formula:

sin[θ(f)]=kin−planek(f)=sin(θsim)fsimf

θ(f)=arcsin[sin(θsim)fsimf]

Therefore, while broadband sources can inject at angles, it must be recognized that the injection angle will change as a function of frequency. At close to normal incidence, the change in angles is smaller than at steeper angles. A source injecting light at 450 to 550 nm with a 5 degrees nominal incidence angle will actually inject at angles between 4.5 and 5.5 degrees. If the nominal angle is increased to 25 degrees, the range of angles will be between 23 and 28 degrees.

The getsourceangle function can be used to get the actual injection angle as a function of frequency. This data is also displayed in the GENERAL tab of the Plane wave and Gaussian sources.

Injection angle example

In usr_broadband_injection_angles.fsp, the source injection angle is 30 degrees, and the frequency range is 100 to 150 THz (2-3um).

Run the simulation, then run associated script. The script first calculates the actual injection angle vs frequency with the getsourceangle function.

usr_broadband_injection_angle_vs_f.jpg

Notice that the injection angle changes as a function of frequency. At low frequencies, the injection angle is almost 40 degrees. At high frequencies, the angle is about 25 degrees.

Next, the script plots the fields profile at 100 and 150 THz. Both figures are from the SAME simulation. The actual propagation direction is obviously different.

usr_broadband_injection_angle_100THz.jpg

Field profile at 100THz. Angle is about 40 degrees.

usr_broadband_injection_angle_150THz.jpg

Field profile at 150THz. Angle is about 25 degrees.

Note: What to do

If you encounter broadband injection angle error in your simulation, there are two options you can choose from to avoid this problem: you can run a series of narrowband simulations or run a series of single frequency simulations. When using a series of narrowband simulations, you need to again check to make sure that the angle deviance is at an acceptable level. If not, you would have to use a series of single frequency simulations to obtain accurate results.

When running these series of simulations, a feature that is very helpful is the parameter sweep.

BFAST can avoid this problem due to its special formulation, please refer BFAST page.

Note: Bloch vector with Bloch boundary conditions

When using bloch boundary conditions, the bloch vector should be set to kSIM. The Bloch BC option "set based on source angle" automatically sets the correct Bloch vector.

Note: Angle going past 90 degrees

When the center angle is going past 90 degrees, the source in an attempt to inject angle above 90 degrees injects evanescent fields. And this behavior is not desirable, and simply state, the source is not able to inject above 90 degrees. When the center angle is large and/or when the source is more broadband, this issue is more likely to occur. In such situations, it is usually necessary to reduce the center angle or source wavelength range.

usr_broadband_injection_angle_above_90.jpg

In order to get broadband results at a certain source angle, a parameter sweep task can be set up to run a series of single frequency simulations sweeping over the frequency range of interest. A guide to setting up parameter sweeps is available at the Parameter sweep tasks page.

To get the broadband results over a range of injection angles, a nested sweep can be set up to sweep over the range of injection angles and source frequencies. The Nested sweeps page provides a tutorial.

Additionally, this issue can be avoided by using BFAST instead of Bloch/periodic plane wave source.

Injection errors

In broadband simulations with angled injection sources, there can be large injection errors at frequencies outside of the center frequency. This can lead to errors if you use the transmission through a monitor placed behind the source to measure reflected power. The alternative technique of using a monitor placed in front of the source is described on the Measuring reflection page.

Advanced

Longer source pulse

A longer source pulse can be used in the case where you are running a broadband simulation and injecting at a steep angles where wavelengths beyond a certain threshold are injected at 90 degrees. In the following image you can see that for this particular source setup, the wavelengths above approximately 0.8um will be injected at 90 degrees.

usr_plane_angled_40_degrees.png

When light is injected at 90 degrees, it propagates across the simulation interfering constructively with itself. At these wavelengths, there can be a large field intensity because the light does not propagate out of the simulation region. The Fourier transform of the time signal will have a large peak corresponding to the wavelengths injected at 90 degrees, and the sidelobes of this peak can create noise at wavelengths of interest.

By default, FDTD uses the shortest possible source pulses in the time domain, which means they have a much broader spectral content than the specified source wavelength range. A longer source pulse will have narrower spectral content, and it is possible to increase the length of the source pulse until spectrum of the source pulse does not include the wavelengths that are injected at 90 degrees.

usr_plane_angled_spectrum.png

The spectrum vs wavelength is plot for the default source pulse. A significant amount of power is injected at wavelengths above 0.8um.

usr_plane_angled_long_spectrum.png

The spectrum for a source pulse where the pulselength and offset have been increased to 10 times the default values. The power a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值