牛顿迭代法计算平方根

博客介绍了牛顿迭代法,它是一个无限逼近逐步取精的过程。还给出代码示例,以 err*t 为精度,经过有限迭代,直至达到精度要求后输出平方根结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

牛顿迭代

  • 牛顿迭代法是无限逼近逐步取精的过程
  • 以下为代码示例
public static double sqrt(double c)
{
	if(c < 0) return Double.NaN;
	double err = 1e-16;
	double t = c;
	while(Math.abs(t-c/t)>err*t) {
		t = (c/t + t)/2.0;
		return t;
	}
}

精度为err*t 经过有限迭代,直到精度达到要求,输出平方根结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值