【AI应用】向量数据库Milvus详细命令

说明:
1)向量数据库milvus可以通过attu界面进行管理
2)也可以通过milvus_cli客户端工具登录数据库milvus
3)查阅向量数据库milvus文档,目前命令行是没有更改用户密码命令
4)客户端milvus_cli工具安装依赖环境很复杂,所以用容器运行

1. Milvus_CLI 命令分为以下几组:

  • create:创建 Collections、数据库、分区、用户、角色或索引
  • delete:删除 Collections、数据库、分区、别名、用户、角色或索引
  • list:列出集合、数据库、分区、用户、角色、授权或索引
  • show:显示连接、数据库、Collection、加载进度或索引进度
  • grant:授予角色或权限
  • revoke:撤销角色或权限
  • oad:加载 Collections 或分区
  • release:释放 Collections 或分区
  • use:使用数据库
  • rename:重新命名 Collections
  • insert:插入实体(文件或行)
1、拉取镜像
docker pull zilliz/milvus_cli:v1.0.2

2、容器部署milvus_cli工具
docker run -dit --rm --name cli --network="host" zilliz/milvus_cli:v1.0.2

3、登录容器并且连接向量数据库milvus
docker exec -it cli /bin/bash
milvus_cli

# milvus_cli详细命令说明
milvus_cli > help
Usage:  [OPTIONS] COMMAND [ARGS]...

  Milvus_CLI

Commands:
  clear    Clear screen.
  connect  Connect to Milvus.
  create   Create collection, database, partition,user or index.
  delete   Delete collection, database, partition,alias,user or index.
  exit     Exit the CLI.
  help     Show help messages.
  insert   Import data from csv file(local or remote) with headers and...
  list     List collections,databases, partitions,users or indexes.
  load     Load collection, partition
  query    Query with a set of criteria, and results in a list of records...
  release  Release collection, partition
  rename   Rename collection
  search   Conducts a vector similarity search with an optional boolean...
  show     Show connection, database,collection, loading_progress or...
  use      Use database
  version  Get Milvus_CLI version.

# 连接数据库milvus
格式:connect -uri http://127.0.0.1:19530 -t root:Milvus

milvus_cli > connect -uri http://物理机ip地址:19530 -t root:数据库milvus密码
Connect Milvus successfully.
+---------+--------------------+
| Address | 172.16.1.120:19530 |
|  Alias  |      default       |
+---------+--------------------+

# 创建数据库milvus
milvus_cli > create database -db shop
Create database shop successfully!

# 列出所有向量数据库milvus
milvus_cli > list databases
+---------+
| db_name |
+---------+
| default |
|  shop   |
+---------+

# 删除数据库milvus
milvus_cli > delete database -db shop
Drop database shop successfully!
milvus_cli > list databases
+---------+
| db_name |
+---------+
| default |
+---------+

# 创建向量milvus用户、角色
create user -u (text) -p (密码)
create role -r (text)

# 删除向量milvus用户、角色
delete user -u (text)
delete role -r (text)

# 列出所有用户
list users

# 列出连接
list connections

# 授予角色
grant role -r 角色名称(text) -u 用户名(text)

# 撤销角色
revoke role -r 角色名称(text) -u 用户名(text)

# 授予权限
grant privilege

# 撤销权限
revoke privilege

# 查看版本
milvus_cli > version
Milvus_CLI v1.0.0

milvus_cli --version

在这里插入图片描述

### 不同操作系统上的 Milvus 向量数据库安装方法 #### MacOS 上的 Milvus 安装 在 MacOS 系统中,可以通过 Docker 来完成 Milvus 的安装。首先需要确保本地已经正确安装并配置好 Docker 环境[^1]。接着通过运行以下命令拉取官方镜像并启动容器: ```bash docker pull milvusdb/milvus:latest docker run -d --name milvus_cpu -p 19530:19530 -p 8080:8080 \ -v /path/to/data:/var/lib/milvus \ milvusdb/milvus:latest ``` 上述命令会下载最新版本的 Milvus 镜像,并将其绑定到主机端口 `19530` 和 `8080`,分别用于服务通信和管理界面访问。 --- #### Windows 下的 Milvus 安装 对于 Windows 用户而言,同样推荐使用 Docker 进行 Milvus 的部署。前提条件同样是确认已成功安装 Docker Desktop 并启用 WSL2 支持功能[^2]。执行如下指令即可快速搭建环境: ```bash docker pull milvusdb/milvus:latest docker run -d --name milvus_cpu -p 19530:19530 -p 8080:8080 \ -v C:\path\to\data:/var/lib/milvus \ milvusdb/milvus:latest ``` 这里需要注意的是,在指定数据存储路径时应采用兼容于 Linux 文件系统的写法(如 `/c/path/to/data`),或者直接利用绝对路径映射至宿主机目录。 --- #### 使用 MySQL 类似方式操作 Milvus 数据库 无论是哪种平台,一旦完成了基础架构构建之后,就可以借助 Python SDK 或其他支持的语言驱动程序连接实例,进而实现诸如创建集合、插入记录等功能。例如下面展示了一段简单的 Python 脚本用来初始化客户端对象并与远程服务器交互: ```python from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection connections.connect("default", host="localhost", port="19530") fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True), FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128) ] schema = CollectionSchema(fields, "Example collection") collection = Collection("example_collection", schema) print(f"Collection created successfully! {collection}") ``` 此脚本定义了一个新的表结构,其中包含整数类型的主键字段以及维度大小固定的浮点型数组列作为嵌入特征表示形式。 --- #### 向量数据库应用价值 向量数据库特别适用于人工智能领域中的相似度检索任务,比如图像识别、自然语言处理等领域内的近邻查询需求。相比于传统关系型数据库仅能基于精确匹配返回结果集的方式,Milvus 提供了高效的 ANN (Approximate Nearest Neighbor) 查询能力,从而极大地提升了大规模高维空间数据分析效率.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋天枫叶35

希望能帮到你,谢谢你能阅读~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值