为什么把Spark RDD中的方法称之为算子?和Scala中的方法有什么不同?

Spark RDD中的算子与Scala方法的主要区别在于执行方式和位置。算子分布在网络节点上执行,导致结果可能因执行顺序不同而乱序,但同一节点内部保持有序。这种现象源于RDD的分布式特性和分区规则,每个分区内的数据按顺序处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算子和方法

算子也就是Operator(操作)
不同的称呼是为了区分RDD的方法和Scala集合对象的方法

  • Scala集合对象的方法都是在同一个节点的内存中完成的
  • RDD的方法可以将计算逻辑发送到Executor端(分布式节点)执行

RDD的方法 外部操作都是在Driver端执行,而方法内部的逻辑代码是在Executor端执行

执行的差异性

foreach为例,属于不同类的foreach,其执行顺序不同:

val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值