注:本文转载自其他博主,并参考百度百科稍作改动,本人并不拥有这篇文章。
先说MATLAB中两个概念:full storage organization(对应于full matrix)和sparse storage organization(对应于sparse matrix)。
而要说明这两个概念,需要介绍稀疏矩阵的概念。
百度百科:在矩阵中,若数值为0的元素数目远远多于非0元素的数目,并且非0元素分布没有规律时,则称该矩阵为稀疏矩阵;与之相反,若非0元素数目占大多数时,则称该矩阵为稠密矩阵。定义非零元素的总数比上矩阵所有元素的总数为矩阵的稠密度。
一般意义上的稀疏矩阵,就是看起来很松散的,也就是说,在这个矩阵中,绝大多数元素是零元素。例如:
0, 0, 0, 0;
0, 0, 1, 0;
0, 0, 0, 0;
0, 1, 0, 2;
计算机存储稀疏矩阵可以有两种思路:
1.按照存储一个普通矩阵一样存储一个稀疏矩阵,比如上面这个稀疏矩阵中总共十六个元素(三个非零元素),把这些元素全部放入存储空间中。这种存储方式,在matlab就叫做full storage organization。
2.只存储非零元素,那么怎么存储呢?
(4,2) 1
(2,3) 1
(4,4) 2
看出来了吧, 只存储非零元素在稀疏矩阵中的位置和值。比如,上面所举的这个例子,值为2的项在第4行第4列,那么我们就只需要存储这一非零项在稀疏矩阵中的“坐标”(4,4)和这一非零项的值2。在MATLAB中,这种存储方式就叫做sparse storage organization。虽然,这样要多存储一组坐标,但如果稀疏矩阵中非零元素非常少,以这种存储方式存储稀疏矩阵反而节省了内存空间。
为什么matlab中会同时存在这两种存储方式呢?
第一种方式, 进行矩阵运算时(比如稀疏矩阵的乘法),算法简单易实现,程序运行的快。
而第二种方式,虽然有时可以节省存储数据时占用的存储空间,但进行运算时需要专门的算法实现,因此运行起来也要更耗时。
就是方便而已,没有什么实质性的变化,两种格式哈。