
Video Inpainting
文章平均质量分 79
视频修复,视频修补,视频擦除
Pengsen Ma
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
视频擦除方向研究(生成技术的一类)
原文连接:研究笔记体验版的模型已开源:GitHub - a312863063/Video-Auto-Wipe: Erase specific content from the video that you don't wanna see如果有什么问题或者想法,相互交流一下吧~目录总述Ⅰ·视频擦除简介Ⅱ· 一种精巧好用的模型——OPNⅢ· 对于OPN模型的一种改良思路Ⅳ· 探索更实际好用的视频擦除框架总述 众所周知,生成技术解决的问题是像素的预测,也原创 2022-03-01 10:25:47 · 3375 阅读 · 0 评论 -
GAN + Video Inpainting的一些思考和相关论文
DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised Domain-Classifier Guided Network(图像恢复-去除阴影)code and paper:DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised Domain-Classifier Guided Network | Papers Wit.原创 2022-04-19 16:25:04 · 1059 阅读 · 0 评论 -
图像分割为黑白,做图像修复的mask使用
今天在做视频修复的时候遇到了一个问题:我应该如何将左边的照片转为右边这种形式的呢(也可以自定义mask,做静态mask...)?第一步:我先用PS将图像抠出来(这里推荐使用套索工具,感觉很好用)然后我右键这个区域,选择填充为白色,然后再右键该区域,选择反向,填充为黑色:这样你选择的地方就变成白色,其他地方就变成黑色了保存为PNG格式到桌面第2步:但是这样不够,因为你会发现这个照片是24位深,并且黑白交互地方有羽化的痕迹通过以下代码生成8位深的纯..原创 2022-03-31 10:24:02 · 5316 阅读 · 0 评论 -
PS将两张图像合成为一张
将下面这两张合成为如下形式的图片:首先使用PS将两张图片打开,将黑白图使用魔棒工具取出白色的地方,然后Ctrl + C复制这个,粘贴到另一张图像上,就可以了(好像需要双击解除图层才可以)...原创 2022-04-01 10:08:33 · 1769 阅读 · 0 评论 -
ffmpeg使用(多个帧合成视频)
1、下载ffmpeg安装包https://github.com/BtbN/FFmpeg-Builds/releases解压文件,进入bin目录,能看到ffmpeg.exe、ffplay.exe、ffprobe.exe三个文件。不用管它,进行下一步。2、设置环境变量点击“系统属性->高级系统设置->环境变量->用户变量”,选择“Path”条目,点击“编辑->新建”,把第一步的bin文件夹路径复制粘贴进去,然后点击确定即可。我们打开cmd命令行窗.原创 2022-03-30 19:52:13 · 5294 阅读 · 2 评论 -
视频修复的评估指标(evaluation metrics)
We report quantitative results by four numeric metrics, i.e., PSNR [33], SSIM [5], flow warping error [17] and video-based Fr´echet Inception Distance (VFID) [5,30]. Specifically, we use PSNR and SSIM as they are the most widely-used metrics for video qual原创 2022-03-20 21:38:58 · 1955 阅读 · 0 评论 -
(RN)Region Normalization for Image Inpainting
论文地址:AAAI 2020.https://arxiv.org/pdf/1911.10375v1.pdfmotivation:传统的image inpainting的方式利用FN(feature normalization)来帮助网络训练,但是他们往往是在整个图像上进行,没有考虑到corrupted region的像素对于mean/variance的影响,这篇文章通过RN(regional normalization)把空间像素根据mask分别不同的区域,然后在不同的区域上分别计算mean和vari.原创 2022-03-08 14:53:08 · 5507 阅读 · 1 评论 -
通过opencv的函数进行图片修复:cv2.inpaint()
库函数使用:dst = cv2.inpaint(src,mask, inpaintRadius,flags)参数是:src:输入8位1通道或3通道图像。 inpaintMask:修复掩码,8位1通道图像。非零像素表示需要修复的区域。 inpaintRadius:算法考虑的每个点的圆形邻域的半径。 flags: INPAINT_NS基于Navier-Stokes的方法(Fast Marching Method 快速行进算法) Alexandru Telea的INPAINT_TELEA原创 2022-03-05 10:27:45 · 3172 阅读 · 0 评论 -
Gated Convolution
Gated Convolution是对部分卷积网络(Partial Convolutions)《Image Inpainting for Irregular Holes Using Partial Convolutions》的改进ICCV 2019《Free-Form Image Inpainting with Gated Convolution》解决问题:Partial Convolutions中Mask更新的不合理;提出新卷积层(Gated Convolution layer ),通过在所.原创 2022-03-02 17:16:42 · 17066 阅读 · 3 评论 -
(OPN)Onion Peel Networks for Deep Video Completion
文章地址:https://arxiv.org/abs/1908.08718代码地址:GitHub - seoungwugoh/opn-demo: Onion-Peel Networks for Deep Video Completion, ICCV 2019介绍地址:研究笔记Ⅱ· 一种精巧好用的模型——OPN 通过多轮的调研和测试,我们发现基于显式擦除的网络较为笨重,占用内存高、计算开销较大,且遇到一些交叉遮挡、频繁切换的视频场景效果就会变糟,因此可改良的空间很小;而基于隐式擦除的网络小巧原创 2022-02-28 16:54:22 · 2557 阅读 · 0 评论 -
多尺度特征融合
目标检测中最具挑战性的问题就是目标的尺度变化问题(scale variance)。在目标检测中,物体的形状和尺寸大小不一,甚至可能出现一些极小、极大或者极端形状(如细长型、窄高型等)的物体,这就给目标的准确识别和精准定位带来了极大困难。现有的针对目标尺寸变化问题而提出的算法中,较为有效的算法主要有图像金字塔和特征金字塔,这两者的共同思想就是利用多尺度特征来检测不同尺寸的物体。1. 图像金字塔(image pyramid)图像金字塔是指将图像缩放至不同分辨率,并用同一个CNN对不同分辨率的图像来提取不同原创 2022-02-14 21:16:02 · 10078 阅读 · 0 评论 -
STTN、DSTT、FuseFormer总结(它们改进了什么?)
STTN原创 2022-01-24 11:19:43 · 8534 阅读 · 0 评论 -
(FuseFormer)Fusing Fine-Grained Informationin Transformers for Video Inpainting
Nevertheless, similar to all existing patch-based Transformer models [8, 42], the hard split operation used in ViBT makes it unable to effectively encode sub-token (subpatch) level representations. Since the attention score is calculated between different原创 2022-01-14 22:01:56 · 4703 阅读 · 0 评论 -
(STTN)Learning Joint Spatial-TemporalTransformations for Video Inpainting
In summary, our main contribution is to learn joint spatial and temporal transformations for video inpainting, by a deep generative model with adversarial training along spatial-temp原创 2022-01-08 11:24:46 · 5927 阅读 · 0 评论 -
(DSTT)Decoupled Spatial-Temporal Transformer for Video Inpainting
Abstract Video inpainting aims to fill the given spatiotemporal holes with realistic appearance but is still a challenging task even with prosperous deep learning approaches. Recent works introduce the promising Transformer architecture into deep video i原创 2022-01-06 20:47:17 · 6109 阅读 · 0 评论