【深度学习】5.1 GoogLeNet网络详解 和 5.2 使用pytorch搭建GoogLeNet网络

本文深入探讨了GoogLeNet网络结构,重点解析了Inception模块的作用,尤其是1×1卷积核在降低维度和参数量上的贡献。此外,还介绍了辅助分类器在训练过程中的作用。最后,通过PyTorch展示了如何搭建GoogLeNet网络,确保特征矩阵尺寸的一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

视频地址
博客地址 - 配合食用

5.1 GoogLeNet网络详解

GoogLeNet 详解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Inception结构

在这里插入图片描述

1×1卷积核作用:降维,降低参数量
在这里插入图片描述

辅助分类器

在这里插入图片描述
在这里插入图片描述


回到主线:GoogLeNet 详解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

GoogLetNet和VGG模型参数

在这里插入图片描述

5.2 使用pytorch搭建GoogLeNet网络

保证特征矩阵高和宽相同

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

在这里插入图片描述

train.py

在这里插入图片描述
在这里插入图片描述

predict.py

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值