【深度学习】7.1 MobileNet网络详解 和 7.2 使用pytorch搭建MobileNetV2并基于迁移学习训练

本文详细介绍了MobileNet系列网络,包括深度可分离卷积的概念及其在MobileNet_v1中的应用。进一步,讨论了MobileNetV2的创新点——倒残差结构和其使用的激活函数。通过PyTorch实现MobileNetV2,并利用迁移学习进行训练,展示了训练准确率的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

视频地址
辅助 博文

7.1 MobileNet网络详解

在这里插入图片描述
在这里插入图片描述

DW卷积

在这里插入图片描述

深度可分离卷积(在DW卷积基础上)

在这里插入图片描述

在这里插入图片描述

MobileNet_v1网络详解

在这里插入图片描述

MobileNet v2网络

在这里插入图片描述

倒残差结构

在这里插入图片描述

激活函数

在这里插入图片描述
在这里插入图片描述

MobileNet v2网络

在这里插入图片描述

在这里插入图片描述

原论文中的性能对比

在这里插入图片描述

7.2 使用pytorch搭建MobileNetV2并基于迁移学习训练

在这里插入图片描述

ConvBNReLU

在这里插入图片描述

倒残差结构

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

train.py下载预训练权重

在这里插入图片描述

在这里插入图片描述

训练准确率

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值