【深度学习】8.1 ShuffleNet v1 v2理论讲解

本文深入探讨了ShuffleNet的理论基础,包括1x1卷积的重要性、ShuffleNet块的设计以及计算量的分析。ShuffleNet V2提出了四大设计准则,强调输入和输出通道的匹配,以提高网络效率。文章通过实例证明了这些准则的有效性,并详细介绍了V2的网络架构及其与V1的区别,展示了在性能评价上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言知识

组卷积

8.1 ShuffleNet v1 v2理论讲解

在这里插入图片描述
性能评价
在这里插入图片描述

在这里插入图片描述
1x1的卷积占据了大部分计算量
在这里插入图片描述
shuffle net采取的block
在这里插入图片描述

shuffle net框架
在这里插入图片描述

注意点
在这里插入图片描述
计算量证明
在这里插入图片描述
shuffle net总结
在这里插入图片描述

v2

在这里插入图片描述
计算量不能光看FLOPs
在这里插入图片描述
在这里插入图片描述
如何设计高效的网络建议
在这里插入图片描述
第一条准则:输入特征矩阵channel = 输出特征矩阵channel
在这里插入图片描述
证明:
在这里插入图片描述
第二条准则:
在这里插入图片描述
证明:
在这里插入图片描述
第三条准则和证明:
在这里插入图片描述
第四条准则和证明:
在这里插入图片描述
四条设计准则的总结
在这里插入图片描述
v2 网络框架
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
v2如何搭建
在这里插入图片描述
v2和v1的不同之处
在这里插入图片描述
性能评价
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值