【stata】egenmore函数速查表

一、简介

egenmore 是一个用于 Stata 的扩展包,包含了一组扩展的 egen 函数,超出了 Stata 内置的 egen 函数集。这些扩展函数提供了更广泛的操作,包括字符串处理、时间序列分析、数值运算、数据分组和汇总等,进一步增强了 Stata 在数据处理和分析中的功能。

要使用 egenmore,你需要先通过以下命令在 Stata 中安装这个扩展包:

ssc install egenmore,replace

安装后,你可以像使用内置的 egen 函数一样,使用 egenmore 提供的扩展函数。

二、函数类型

函数根据主题分为以下几类:

  • 分组与图形化
  • 字符串、数字与转换
  • 日期、时间与时间序列
  • 汇总与估计
  • 第一与最后
  • 随机数
  • 行操作

三、分组与图形化

  • axis(varlist):为图形构建分类轴变量。生成一个变量,值为1, 2, …,代表 varlist 形成的组。支持 gaplabel()missingreverse 选项。适用于分类变量的排序和图表准备。
  • clsst(varname):返回最接近指定值的数字。later 指定在相等时取较晚的值。
  • egroup(varlist)egengroup() 的扩展,增加了 label(lblvarlist) 选项。
  • group2(varlist)egengroup() 的扩展,增加了按指定 egen 调用结果排序的功能。
  • mlabvpos(yvar xvar):自动生成标记标签位置的变量,用于散点图中标记标签的钟表位置分布。

四、字符串、数字与转换

  • base(varname):将整数变量转换为指定基数(默认2)的字符串表示形式。
  • decimal(varlist):将变量列表的值视为指定基数(默认2)的表示,并生成十进制等价值。
  • incss(strvarlist):标识字符串列表中是否包含指定子字符串。
  • iso3166(varname):将国家名称映射为ISO 3166-1-alpha-2代码,或反之。支持 originlanguageverbose 选项。
  • msub(strvar):替换字符串变量中的特定子字符串。
  • noccur(strvar):计算字符串变量中指定子字符串的出现次数。
  • nss(strvar):返回字符串变量中指定子字符串的出现次数。
  • ntos(numvar):将数值变量映射为字符串变量。
  • nwords(strvar):返回字符串变量中的单词数。
  • repeat():按顺序生成重复值列表。
  • sieve(strvar):根据指定条件选择字符串中的字符。
  • ston(strvar):将字符串变量映射为数值变量。
  • truncdig(varname):按指定的十进制位数截断数值变量。
  • wordof(strvar):返回字符串变量中的第 # 个单词。

五、日期、时间与时间序列

  • bom(m y):生成指定月份和年份的月初日期。
  • bomd(datevar):生成包含指定日期的月份的月初日期。
  • dayofyear(daily_date_variable):生成指定日期变量的年份中的天数。
  • dhms(d h m s):生成包含小时、分钟和秒的日期变量。
  • elap(time):生成包含天数、小时、分钟和秒数的字符串变量。
  • elap2(time1 time2):生成表示两个时间值之间间隔的字符串变量。
  • eom(m y):生成指定月份和年份的月末日期。
  • eomd(datevar):生成包含指定日期的月份的月末日期。
  • ewma(timeseriesvar):计算指数加权移动平均值。
  • filter(timeseriesvar):计算线性滤波器的值。
  • f
### 在 Stata 中实现道格拉斯函数的 SFA 分析 在 Stata 中进行随机前沿分析(SFA),可以使用 `frontier` 命令[^1]。道格拉斯生产函数是一种常用的生产函数形式,通常表示为 \( Q = A L^\alpha K^\beta \),其中 \( Q \) 是产出,\( L \) 和 \( K \) 分别是劳动和资本投入,\( \alpha \) 和 \( \beta \) 是弹性系数。 以下是实现道格拉斯函数的 SFA 分析的具体方法: #### 数据准备 确保数据集包含以下变量: - 产出变量(如销售额或总产量) - 投入变量(如劳动力、资本等) 假设变量名称分别为 `output`(产出)、`labor`(劳动力)和 `capital`(资本)。 #### 模型设定 道格拉斯函数的形式可以写为对数线性模型: \[ \ln(Q) = \ln(A) + \alpha \ln(L) + \beta \ln(K) + V - U \] 其中: - \( V \) 是随机误差项,服从正态分布。 - \( U \) 是非负的技术无效率项,通常假设为截断正态分布或指数分布。 在 Stata 中,可以通过对变量取对数来转换为线性形式。 #### 实现代码 以下是在 Stata 中实现道格拉斯函数 SFA 的代码示例: ```stata * 对变量取对数 gen ln_output = ln(output) gen ln_labor = ln(labor) gen ln_capital = ln(capital) * 使用 frontier 命令进行 SFA 分析 frontier ln_output ln_labor ln_capital, uhet(constant) vdist(normal) cost ``` - `uhet(constant)` 表示技术无效率项 \( U \) 包含一个常数项。 - `vdist(normal)` 指定随机误差项 \( V \) 服从正态分布。 - `cost` 表示这是一个成本函数(如果研究的是生产函数,则去掉此选项)。 #### 输出解释 运行上述命令后,Stata 将输出模型的估计结果,包括: - 投入变量的系数(即 \( \alpha \) 和 \( \beta \))。 - 技术效率的估计值。 - 随机误差项和无效率项的方差估计。 #### 注意事项 - 如果数据中存在零值或负值,取对数时可能会导致问题。需要对数据进行预处理,例如加一个小的常数值。 - 根据具体研究问题,可以选择不同的分布假设(如指数分布代替截断正态分布)[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mengke25

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值