现有针对遮挡的方法一般包括采用姿态或者分割的信息,提取每个part的特征,再分别比较每个部分的特征
缺点:姿态估计成本,需要对齐
本文没有采用姿态估计的方法
提取特征:首先利用完整的卷积网络(FCN)和金字塔池来提取空间金字塔特征
匹配:提出了一种无对齐匹配方法,即前视金字塔重建法(FPR),以精确计算被遮挡者之间的匹配分数,尽管他们的尺度和大小不同。FPR利用空间金字塔特征的鲁棒重构误差来衡量两个人之间的相似性。
关键部分:设计了一个遮挡敏感的前景概率发生器,它更关注于无遮挡人体部位,以细化相似度计算,减少遮挡带来的污染。
Architecture of the Proposed Model
it consists of a Full Convolutional Network (FCN), a Pyramid Pooling layer and a Foreground Probability Generator.
FCN
我们抛弃了所有的全连接层来实现只剩下卷积和池化层的全卷积网络(FCN),全卷积网络仍然保留空间坐标信息,能够提取空间特征,该算法基于resnet - 50[1],只包含1个卷积层和4个Resblocks层,最后一个Resblock输出空间特征图。