
re-id论文学习
文章平均质量分 76
≈落小朵
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【论文阅读】Cascade Transformers for End-to-End Person Search
论文阅读 Cascade Transformers for End-to-End Person Search原创 2022-09-26 17:03:05 · 1331 阅读 · 2 评论 -
【论文阅读】Anchor-Free Person Search
行人搜索结合了检测和重识别任务,通过定位及识别真实环境获取的图像进行人员搜索。作者提出了 Feature-Aligned Person Search Network (AlignPS) 采用特征聚合模块(aligned feature aggregation module)用于行人搜索任务。......原创 2022-08-02 16:29:21 · 1308 阅读 · 1 评论 -
【论文阅读】TransReID: Transformer-based Object Re-Identification
论文代码链接论文原文链接摘要目标重识别的关键就是提取鲁棒的特征!之前方法的弊端:卷积神经网络(CNN)的方法一次只处理一个局部邻域,并且由于卷积和下采样算子(如池化和跨卷积)导致细节信息丢失。提出:纯基于transformer的目标ReID框架。具体来说:我们首先将图像编码为一系列补丁,并通过一些关键改进构建基于transformer的强baseline,这在使用基于cnn的方法的几个ReID基准上取得了有竞争力的结果。为了进一步增强transformer背景下特征学习,设计了两个新的.原创 2021-12-28 11:00:07 · 3028 阅读 · 0 评论 -
YOLOV4流程图(方便理解)
最近接触了目标检测相关算法,因此总结模型图便于理解和后续改进。原创 2021-11-26 15:07:48 · 2448 阅读 · 8 评论 -
【论文阅读】Multi-View Spectral Clustering with Optimal Neighborhood Laplacian Matrix
问题:现有的方法通常将一组预先指定的一阶拉普拉斯矩阵线性组合来构造最优的拉普拉斯矩阵,导致其表达能力有限,信息挖掘不足。解决:该算法同时的通过搜索一阶基和高阶基的线性组合的邻域来生成最优拉普拉斯矩阵该设计增强了最优拉普拉斯算子的表示能力,更好地利用了隐藏的高阶连接信息,提高了聚类性能。第三类方法是通过极小化来优化基拉普拉斯矩阵的组合系数组合矩阵的标准化切割缺点:首先,这些算法都有一个共同的假设,即最优拉普拉斯矩阵位于由基拉普拉斯矩阵张成的线性空间中。现有算法没有充分考虑高阶亲和度信息,这对揭原创 2020-12-22 22:02:28 · 616 阅读 · 0 评论 -
学习资料re-id
汇总原创 2020-10-08 11:18:05 · 663 阅读 · 0 评论 -
【论文阅读】Exploring Spatial Significance via Hybrid Pyramidal Graph Network for Vehicle Re-identificatio
原创 2020-10-07 21:58:35 · 1185 阅读 · 2 评论 -
【论文阅读】SPANET: SPATIAL PYRAMID ATTENTION NETWORK FOR ENHANCED IMAGE RECOGNITION
code其他的讲解we introduce Spatial Pyramid Attention Network (SPANet) to investigate the role of attention block for image recognition.原创 2020-09-29 21:56:53 · 1148 阅读 · 0 评论 -
【论文阅读】Further Non-local and Channel Attention Networks for Vehicle Re-identification
问题: 类间差异小,类内差异大提出:双分支自适应注意网络在视觉皮层双流理论的启发下, 基于non-local和channel关系 ,构建了一个双分支FNC网络来捕获多种有用信息(消除背景的影响)Further Non-local and Channel attention (FNC) is constructed to simulate two-stream theory of visual cortex提出了一种有效的 注意力融合方法 ,充分模拟了空间注意力和信道注意力的影响。Proposed原创 2020-09-28 22:07:16 · 520 阅读 · 0 评论 -
【论文阅读】Hierarchical Bi-Directional Feature Perception Network for Person Re-Identification
问题:最有判别力的特征 由于遮挡或者视角变化 造成缺失的时候就是最有用的缺失一部分解决:多层次信息相互关联,相互加强首先,利用低秩双线性池对跨层特征的相关映射进行建模。然后,在相关图的基础上,利用双向特征感知(BFP)模块丰富高级特征的注意区域,学习低级特征中的抽象和具体信息然后,我们提出了一种新的端到端层次网络,该网络集成了多级增强的特征,并将增强的中低层特征输入到后续的层中,以重新训练一个新的强大的网络。此外,我们提出了一种新的可训练的广义pooling,它可以动态地选择featur原创 2020-09-27 20:00:41 · 580 阅读 · 0 评论 -
【论文阅读】Pyramid Attention Networks for Image Restoration
论文地址论文代码参考博客参考知乎-具体细节注意力机制(Attention)Non-local Neural Networks图像非局部均值滤波的原理Non-local模块与Self-attention的之间的关系与区别? self-attention code introduction共同的部分都是利用相关特征学习权重分布,再用学出来的权重施加在特征之上进一步提取相关知识。 不过施加权重的方式略有差别,可以总结如下:加权可以作用在原图上;加权可以作用在空间尺度上,给不同空间区域加权;加权原创 2020-09-21 11:38:55 · 1588 阅读 · 2 评论 -
【论文阅读】Cross-Resolution Adversarial Dual Network for Person Re-Identification and Beyond
考虑到真实场景中摄像机和目标人之间距离不同可能会带来 分辨率不匹配 的情况,会降低行人重识别算法的表现。这篇论文提出了一种的新的生成对抗网络来解决跨分辨率的行人重识别,可以学习分辨率不变的图像表示,同时能恢复低分辨率输入图像丢失的细节,共同用于改善重识别的性能。在五个标准行人重识别基准上的实验结果证实了该方法的有效性,尤其是在训练过程中不知道输入分辨率的情况下。此外,两个车辆重识别基准测试的实验结果也证实了该模型在交叉分辨率视觉任务上的通用性。从低分辨率到高分辨率,一般情况下的想法本文的创新:摘原创 2020-08-30 21:59:31 · 630 阅读 · 0 评论 -
【论文阅读】Batch DropBlock Network for Person Re-identification and Beyond
论文地址论文代码论文翻译以及介绍别的博客关注人体的局部信息框架:全局和局部的特征结合在一起全局特征:提供了全局特征表示,对特征擦除分支进行监督局部特征:特征擦除,GMP获得2048维向量-1024维 (drop 的区域也可以渐进式的丢弃)批处理DropBlock层将随机丢弃张量T的相同区域 ######feature dropping branch 用 BatchDropBlock Layer 在 feature map T 执行,得到 batch erased feature map原创 2020-09-02 19:28:00 · 260 阅读 · 0 评论 -
【论文阅读】Improving Face Recognition from Hard Samples via Distribution Distillation Loss
论文地址代码地址其他的博客:主要是翻译知乎的介绍Abstract目前基于深度学习的人脸识别算法已经可以较好的处理简单样本,但对于困难样本(低分辨率、大姿态等)仍表现不佳。目前主要有两种方式尝试解决这一问题。第一种方法是充分利用某种需要处理的人脸畸变的先验信息,设计特定的结构或损失函数。这种方式通常不能方便地迁移到其他畸变类型。第二种方法是通过设计合适的损失函数,减小类内距离,增大类间距离,得到更具辨别能力的人脸特征。这种方式一般在简单和困难样本上存在明显的性能差异。为了提升人脸识别模型在困难样本上原创 2020-08-22 21:45:18 · 1334 阅读 · 0 评论 -
【CVPR2020论文合集】
论文合集再识别原创 2020-08-17 15:21:46 · 517 阅读 · 0 评论 -
【论文阅读】Salience-Guided Cascaded Suppression Network for Person Re-identification
论文地址显著导向的级联抑制网络用于行人再识别摘要动机:大部分都关注显著的特征,但是不显著的特征也可能同样的重要提出了: Salience-guided Cascaded Suppression Network (SCSN) which enables the model to mine diverse salient features and integrate these features into the final representation by a cascaded manner挖掘不原创 2020-08-11 21:57:46 · 1351 阅读 · 1 评论 -
【论文阅读】Tensor Low-Rank Reconstruction for Semantic Segmentation
论文地址论文代码代码暂时未开源**卷积网络中的non-local,**即:某一像素点处的响应是其他所有点处的特征权重和,将每一个点与其他所有点相关联,实现non-local 思想。摘要上下文信息在语义分割的成功中起着不可或缺的作用。事实证明,基于non-local的self-attention的方法对于上下文信息收集是有效的。由于所需的上下文包含空间和通道方面的注意力信息,因此3D表示法是一种合适的表达方式。但是,这些non-local方法是基于2D相似度矩阵来描述3D上下文信息的,其中空间压缩原创 2020-08-08 11:17:05 · 2658 阅读 · 12 评论 -
[论文阅读]Spectral Feature Transformation for Person Re-identification
论文地址graph相关论文介绍和解析自注意力机制的应用谱聚类适合Few clusters, even cluster size, non-flat geometry,所以如果batch中的类别很多的话,这个套路是不是就不一定work了呢…用ResNet提取特征,然后再对batch内所有image依据visual similarity建图(商汤的图和图森的这篇有点区别),然后从graph cut的角度出发,对某个person,希望找到一种cut能将与这个person相同的样本分到一起,不同的分到不同原创 2020-07-28 16:38:44 · 468 阅读 · 0 评论 -
【论文阅读】Pose-guided Visible Part Matching for Occluded Person ReID
在这里插入图片描述原创 2020-05-28 22:39:14 · 920 阅读 · 1 评论 -
【论文阅读】Asymmetric Co-Teaching for Unsupervised Cross-Domain Person Re-Identification
method先训练源域的模型,采用交叉熵和三元组损失对于re-rank的介绍re-rank的介绍k-reciprocal nearest neighbor 算法如果两张图片A,B相似,那么B应该会在A的前K个近邻里面,反过来,A也会在B的前K个近邻里面。但如果两张图C,D不相似,即使C在D的前K个近邻里面,D也不会在C的前K个近邻里面...原创 2020-04-16 19:23:56 · 736 阅读 · 0 评论 -
论文阅读《Foreground-aware Pyramid Reconstruction for Alignment-free Occluded Person Re-identification》
关于行人再识别的遮挡问题:方法概括CVPR2020现有针对遮挡的方法一般包括采用姿态或者分割的信息,提取每个part的特征,再分别比较每个部分的特征缺点:姿态估计成本,需要对齐本文没有采用姿态估计的方法提取特征:首先利用完整的卷积网络(FCN)和金字塔池来提取空间金字塔特征匹配:提出了一种无对齐匹配方法,即前视金字塔重建法(FPR),以精确计算被遮挡者之间的匹配分数,尽管他们的尺度...原创 2020-03-30 15:21:35 · 831 阅读 · 1 评论 -
【论文阅读】Identity Preserving Generative Adversarial Network for Cross-Domain Person Re-identification
Identity Preserving Generative Adversarial Network for Cross-Domain PersonRe-identification这篇文章2019年被发表在IEEEacess期刊无监督跨域摘要行人再识别任务要求;问题:由于源域和目标域之间的偏差,大多数现有的人员再识别(re-ID)模型常常不能很好地从源域泛化。在源域中,模型被训练...原创 2020-08-04 21:41:49 · 972 阅读 · 0 评论 -
【论文阅读】 Patch-based Discriminative Feature Learning for Unsupervised Person Re-identification
这篇文章是关于分块的特征学习用于行人再识别任务CVPR2019无标签可以参考的博客及连接:介绍的比较详细博客,讲方法讲方法部分摘要简介本文提出了一种基于patch的无监督学习框架,以便从patch而不是整幅图像中学习识别特征,即利用patch之间的相似性来学习一个有区别的模型。(主要关注局部的信息)开发了PatchNet从featur...原创 2020-02-27 21:57:29 · 822 阅读 · 2 评论 -
【论文阅读】Pedestrian Alignment Network for Large-scale Person Re-identification
论文为空间对齐网络,本文采用对图片进行仿射变换将行人图像中存在的背景冗余和部分缺失进行对齐,采用res50作为基础网络,进行特征提取。其中重要的部分是仿射变换部分,STN.这篇论文可以借鉴的博客及代码res50网络的基础结构论文的github代码知乎:对网络的原理介绍较多part-aligned相关论文的介绍cdy的论文阅读笔记整体网络的架构描述【文中的3.1部分】我们的...原创 2020-02-27 13:01:16 · 203 阅读 · 0 评论 -
【论文笔记】Auto-ReID: Searching for a Part-aware ConvNet for Person Re-Identification
相关的博客博客园CSDN作者采用神经架构搜索(NAS)主要就是用了人体的结构原创 2020-01-03 10:24:28 · 653 阅读 · 0 评论 -
[l论文学习]DEEP SEMI-SUPERVISED PERSON RE-IDENTIFICATION WITH EXTERNAL MEMORY
为了克服监督再识别的可扩展性问题,我们考虑了半监督再识别问题,即从有限数量的少量标识图像和大量未标识图像中学习。为此,我们提出了一个基于外部性记忆的深度半监督reid模型(EDS)。为了有效地处理标记数据和未标记数据之间的关系,克服深度学习中每个epoch中批量大小的限制,设计了基于外存储器的两个loss函数。因此,可以实现一种有效的深度半监督学习方法。大量的实验验证了该方法在半监督人识别中的优越...原创 2020-01-02 19:45:06 · 575 阅读 · 0 评论 -
[论文笔记]Triplet-Center Loss for Multi-View 3D Object
Triplet-Center Loss for Multi-View 3D Object(翻译理解)摘要:现有的三维物体识别算法多侧重于利用具有softmax损失的深度学习模型的较强鉴别能力对三维数据进行分类,而对于三维物体检索的深度度量学习的鉴别特征或多或少被忽略。首先介绍了两类典型损失:三重损失和中心损失,这两类损失比传统的分类损失具有更强的识别性。提出的三层中心损失模型对每个类学习一个...原创 2019-12-31 17:53:42 · 1204 阅读 · 3 评论 -
[论文笔记]Beyond Part Models: Person Retrieval with Refined Part Pooling(PCB)
Beyond Part Models: Person Retrieval with Refined Part Pooling(阅读)几个关于这篇文章的博客http://www.mclover.cn/blog/index.php/archives/423.html(细)http://www.jintiankansha.me/t/ba4B60tkVShttps://zhuanlan.zhihu...原创 2019-12-30 20:50:34 · 576 阅读 · 0 评论