python代码实现bp神经网络(反向传播)

本文介绍了使用Python实现BP(反向传播)神经网络的过程,包括前向传播的向量化表示,反向传播的数学公式及3层神经网络的具体代码实现,其中包含4个输入神经元、3个隐藏神经元和2个输出神经元。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前向传播过程的向量化表示,以及所有公式对应维度如下:
请勿转载
反向传播过程的向量化表示如下,所有符号维度和前向传播的一致:
请勿转载
实现一个3层神经元,输入层4个神经元,隐藏层3个神经元,输出层2个神经元的代码如下:

import numpy as np

def parameter_initializer(n1, n2, n3):
    """ 初始化权值 """
    w1 = np.random.normal(scale=(2.0/n1)**0.5, size=(n1, n2))
    b1 = np.zeros(shape=(1,n2))
    w2 = np.random.normal(scale=(2.0/n2)**0.5, size=(n2, n3))
    b2 = np.zeros(shape=(1, n3))
    return w1, b1, w2, b2

def sigmoid(z):
    a 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值