【unitrix数间混合计算】2.23 类型级二进制非负数减法(usub.rs)

一、源码

这段代码是用Rust实现的类型级二进制非负数减法。它使用了类型系统来表示二进制数并在编译时进行计算。

use crate::number::{
    Z0, O, I, Bin,
    BinUnsigned,
    Sub1, SubOne, BinNormalize, IfB0,
};

// ===================== 非负数减法 =====================
pub trait USub<Rhs = Self> {
    type Output;
    fn usub(self, rhs: Rhs) -> Self::Output;
}

pub type USubOut<A, B> = <A as USub<B>>::Output;

impl<U: BinUnsigned> USub<Z0> for U {
    type Output = U;
    #[inline]
    fn usub(self, _: Z0) -> Self::Output { self }
}

impl<Ul: BinUnsigned, Ur: BinUnsigned> USub<Bin<Ur, O>> for Bin<Ul, O>
where
    Ul: USub<Ur>,
    USubOut<Ul, Ur>: BinNormalize<O>,
{
    type Output = IfB0<USubOut<Ul, Ur>>;
    #[inline]
    fn usub(self, _: Bin<Ur, O>) -> Self::Output { Bin::default() }
}

impl<Ul: BinUnsigned, Ur: BinUnsigned> USub<Bin<Ur, O>> for Bin<Ul, I>
where
    Ul: USub<Ur>,
{
    type Output = Bin<USubOut<Ul, Ur>, I>;
    #[inline]
    fn usub(self, _: Bin<Ur, O>) -> Self::Output { Bin::default() }
}

impl<Ul: BinUnsigned, Ur: BinUnsigned> USub<Bin<Ur, I>> for Bin<Ul, O>
where
    Ul: USub<Ur>,
    USubOut<Ul, Ur>: SubOne,
{
    type Output = Bin<Sub1<USubOut<Ul, Ur>>, I>;
    #[inline]
    fn usub(self, _: Bin<Ur, I>) -> Self::Output { Bin::default() }
}

impl<Ul: BinUnsigned, Ur: BinUnsigned> USub<Bin<Ur, I>> for Bin<Ul, I>
where
    Ul: USub<Ur>,
    USubOut<Ul, Ur>: BinNormalize<O>,
{
    type Output = IfB0<USubOut<Ul, Ur>>;
    #[inline]
    fn usub(self, _: Bin<Ur, I>) -> Self::Output { Bin::default() }
}

二、基本概念

  1. 类型级编程:在编译时通过类型系统进行计算,而不是运行时。

  2. 二进制数表示:

  • Z0 表示零

  • O 表示二进制位的0

  • I 表示二进制位的1

  • Bin<U, B> 表示一个二进制数,其中U是更高位的部分,B是最低位(0或1)

三、代码结构

  1. USub trait:

pub trait USub<Rhs = Self> {
    type Output;
    fn usub(self, rhs: Rhs) -> Self::Output;
}
  • 定义了非负数减法trait,Rhs是右操作数类型

  • Output关联类型表示减法结果的类型

  • usub方法执行减法操作

  1. USubOut类型别名:

pub type USubOut<A, B> = <A as USub<B>>::Output;
  • 方便获取减法结果的类型
  1. 具体实现:

a. 任何数减去零:


impl<U: BinUnsigned> USub<Z0> for U {
    type Output = U;
    fn usub(self, _: Z0) -> Self::Output { self }
}
  • 任何数减去零等于它本身

b. 偶数减偶数(…0 - …0):


impl<Ul, Ur> USub<Bin<Ur, O>> for Bin<Ul, O>> where ...
  • 形式:U0 - V0 = (U-V)0

  • 需要高位相减后规范化(去除前导零)

c. 奇数减偶数(…1 - …0):


impl<Ul, Ur> USub<Bin<Ur, O>> for Bin<Ul, I>> where ...
  • 形式:U1 - V0 = (U-V)1

  • 直接高位相减,最低位保持1

d. 偶数减奇数(…0 - …1):


impl<Ul, Ur> USub<Bin<Ur, I>> for Bin<Ul, O>> where ...
  • 形式:U0 - V1 = (U-V-1)1

  • 需要高位相减后再减1,结果最低位为1

e. 奇数减奇数(…1 - …1):


    impl<Ul, Ur> USub<Bin<Ur, I>> for Bin<Ul, I>> where ...
  • 形式:U1 - V1 = (U-V)0

  • 高位相减,最低位变0,需要规范化

四、关键点
  1. 递归计算:通过类型系统递归地处理二进制数的每一位

  2. 边界处理:通过BinNormalize处理前导零的情况

  3. 编译时计算:所有操作都在编译时通过类型系统完成

  4. 类型安全:保证不会出现负数结果(因为是非负数减法)

这种技术常用于需要编译时计算保证的场景,如物理单位计算、密码学或嵌入式系统开发。

<think>好的,我现在需要帮助用户解决在蠕变子程序中实现温度场耦合计算的问题。首先,我需要理解用户的具体需求。用户提到了蠕变子程序和温度场耦合,这可能涉及到材料在高温下的蠕变行为与温度变化的相互作用。用户可能是在使用ABAQUS进行有限元分析时遇到了这个问题,需要知道如何通过子程序来实现这种耦合。 接下来,我应该回忆一下ABAQUS中相关的用户子程序。蠕变分析通常使用CREEP子程序,而温度场耦合可能涉及到热传导分析,可能需要UMATHT或UMAT等子程序。根据用户提供的引用资料,特别是引用[1]提到的UMATHT用于传热分析,引用[3]提到USUB用于热机械耦合,而引用[4]中提到的VUMAT用于定义材料特性。不过,CREEP子程序可能不在引用中列出的那些里,但根据知识库,CREEP是ABAQUS中处理蠕变的常用子程序。 现在,用户希望将蠕变与温度场耦合。这意味着在蠕变模型中需要考虑温度的影响,同时温度场的变化可能由蠕变产生的热量或其他因素引起。因此,耦合分析需要同时处理力学和热学方程。可能的实现方法包括:在蠕变子程序中读取当前温度,更新蠕变应变率,同时考虑温度对材料参数的影响;或者在热分析子程序中考虑蠕变产生的热量,如塑性耗散。 根据引用[3],USUB可以用于热机械耦合,定义温度相关材料行为。但用户的问题更偏向于蠕变与温度场的耦合,可能需要结合CREEP和UMATHT或UMAT。例如,在CREEP子程序中访问温度变量,然后在每个增量步中更新蠕变应变,同时温度场通过传热方程计算,两者交替或同步求解。 另外,引用[4]中的VUMAT用于定义材料特性,但CREEP是专门处理蠕变的,可能更合适。需要确认CREEP子程序是否支持温度场的数据传递。根据ABAQUS文档,CREEP子程序可以访问温度、场变量等,因此可以在蠕变模型中直接使用温度作为变量。 实现步骤可能包括:在材料定义中启用蠕变和热传导属性,编写CREEP子程序以包含温度相关的蠕变定律,同时设置热传导分析,确保温度场能够传递到蠕变计算中。可能需要使用耦合的温度-位移分析步,或在顺序分析中交替进行热和力学分析。 还需要考虑时间积分方法,耦合问题通常分为显式和隐式方法。对于强耦合,可能需要使用完全耦合的求解器,而对于弱耦合,可以分步求解。用户可能需要根据问题的线性程度选择合适的方法。 验证方面,用户可能需要先测试纯热传导或纯蠕变的情况,再逐步加入耦合效应。例如,先实现温度对蠕变的影响,再考虑蠕变产生的热量对温度场的影响。 最后,生成相关问题时要围绕蠕变分析、温度场耦合方法、子程序编写、材料参数定义等方面展开,帮助用户深入理解相关主题。</think>在ABAQUS中实现蠕变与温度场耦合计算,需结合**蠕变本构模型**和**热传导方程**的交互作用。以下是实现方法的步骤和关键点: --- ### 一、理论基础 1. **蠕变-温度耦合机理** 蠕变应变率$\dot{\epsilon}_{cr}$通常与温度$T$呈指数关系,例如Norton-Bailey模型: $$\dot{\epsilon}_{cr} = A \cdot \sigma^n \cdot e^{-Q/(RT)}$$ 其中$A$为材料常数,$Q$为激活能,$R$为气体常数,$T$为当前温度[^1]。 2. **热传导方程耦合项** 温度场的控制方程需包含蠕变耗散热: $$\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + \eta \sigma : \dot{\epsilon}_{cr}$$ 其中$\eta$为热转换效率因子[^3]。 --- ### 二、实现步骤 1. **子程序选择** - **蠕变模型**:使用`CREEP`子程序定义温度依赖的蠕变应变率 - **温度场更新**:通过`UMATHT`或`HETVAL`子程序实现热源耦合 - **数据传递**:利用`USDFLD`或`UVARM`传递场变量(如温度) 2. **CREEP子程序编写要点** ```fortran SUBROUTINE CREEP(DECRA,DESWA,STATEV,SERD,EC,ESW,P,QTILD, 1 TEMP,DTEMP,PREDEF,DPRED,TIME,DTIME,CMNAME,LEXIMP,LEND, 2 COORDS,NSTATV,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) ! 读取当前温度TEMP ! 计算温度相关蠕变率 DECRA(1) = A * (QTILD**n) * EXP(-Q/(R*TEMP)) * DTIME END SUBROUTINE ``` 3. **热源耦合实现** 在`HETVAL`中计算蠕变生热率: ```fortran SUBROUTINE HETVAL(CMNAME,TEMP,TIME,DTIME,STATEV,FLUX, 1 PREDEF,DPRED) ! 获取当前应力S和蠕变应变率DECRA FLUX(1) = eta * S : DECRA ! 热源项 END SUBROUTINE ``` --- ### 三、关键配置 1. 分析步类型选择**Coupled Temp-Displacement** 2. 材料属性定义: ```inp *Material, name=Material-1 *Conductivity ! 热导率 *Specific Heat ! 比热容 *Density ! 密度 *Creep, law=USER ! 调用CREEP子程序 ``` 3. 场变量输出设置: ```inp *Output, field EVOL, NT11 ! 输出温度场和等效蠕变应变 ``` --- ### 四、验证建议 1. **单轴拉伸测试**:对比恒温与变温条件下的蠕变曲线 2. **热-力循环验证**:检查能量守恒是否满足$\int \eta \sigma : \dot{\epsilon}_{cr} dt = \Delta Q$ ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuyuan77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值