批量建模:一元线性回归

本文探讨了一元线性回归在批量建模中的应用,特别是在处理大量基因与临床指标关联分析的问题。面对需要进行10000次模型建立的挑战,作者提出利用R语言和apply函数族进行编程设计,实现了批量建立和评估模型。结果显示,即使在随机矩阵中,也有不少模型的p值小于0.05,引发对“寻P医学”现象的思考。下期将介绍逻辑回归的批量变量交叉建模。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

妈妈买个电脑吧,电脑除了生孩子啥不能干

                                                                                                                     -----茅旭东8岁

回归属于监督学习,用于预测输入变量和输出变量之间的关系。

本文主要解决一元线性回归模型多变量批量建模问题。

首先复习一下一元线性回归

自变量:即样本的特征数值

因变量(响应变量):即需

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

茅逗逗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值