问题:有一个国家发现了5座金矿,每座金矿的黄金储量不同,需要参与挖掘的工人数也不同(情况如下图)
金矿编号 | 黄金储量 | 需要人数 |
---|---|---|
1 | 400 | 5 |
2 | 500 | 5 |
3 | 200 | 3 |
4 | 300 | 4 |
5 | 350 | 3 |
首先,动态规划方法适合的题型4个基本特点是:
1、最优子结构,当前一个状态得到最佳解时,当前状态在前一个状态下一定有最佳解;
2、子问题重叠,每个状态下要解决的问题除参数不同外,其本质是一样的;
3、有边界,当解决了最后一个子问题时,整个问题得解;
4、子问题独立,解决一个子问题时不依赖于另一个同级的子问题,只与它的母问题有关;
当存在这四个特点时很大程度上可以确定用动态规划的方法解觉了。
而解决动态规划问题的关键在于写出状态转移方程式,一般来说,对应一个状态下,对某件事情是否执行,这是两个子问题,每个子问题都可以递归下一个状态,最终到达边界条件返回,再判断最开始的状态下两个子问题的最优解,即是整个问题的答案。
我再使用国王的金矿的例子来解释动态规划的实现过程:
有一个国家的国王为了增强国力要开采已探明储量的5座金矿,开采每一座金矿所需的人员是固定的,而且为了能顺利将金矿开采又不耽误人民生活,国王决定只调配500人去挖金矿,要同时开